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Abstract. The presented work aims at tackling the problem of externally cali-
brating a network of cameras by observing a dynamic scene composed of pedes-
trians. It relies on the single assumption that human beings walk aligned with
the gravity vector. Usual techniques to solve this problem involve using more
assumptions such as a planar ground or assumptions about pedestrians’ motion.
In this work, we drop all these assumptions and design a probabilistic layered
algorithm that deals with noisy outlier-dominated hypotheses to recover the ac-
tual structure of the network. We demonstrate our process on two known public
datasets and exhibit results to underline the effectiveness of our simple but adapt-
able approach to this general problem.

1 Introduction

External calibration of a camera network is a process preceding many other tasks in
computer vision such as scene reconstruction or human gesture analysis. Manual tech-
niques are inconvenient as they require moving a calibration pattern in the common
field of view or manually annotating corresponding points in multiple images. Auto-
matic techniques exist to circumvent this manual part by automatically detecting corre-
sponding keypoints or regions. However, when the baseline grows or the scene becomes
dynamic, precision and recall of all kinds of such correspondences drop dramatically.

The use of dynamic objects finds its use in many different fields of work. Surveil-
lance applications usually cannot rely on background correspondences of the scene as
people are moving in front, or because of the lack of stable detectable keypoints. A va-
riety of work has already been done in this area, relying on assumptions about different
aspects of human beings such as average height, motion or a planar ground.

In this work, we aim at demonstrating the possibility to solve this problem by using
the smallest assumption of human walking: Human beings stand against a common
gravity vector while walking. Following the paradigm that intra-camera correspon-
dences (between multiple time steps) are more reliable than inter-camera ones (e.g.
pedestrian correspondences), we fit a plane through an estimated gravity vector of a
tracked person at two time instances (Fig. 1). Using a probabilistic sampling frame-
work, we establish plane correspondences between multiple camera pairs at different
time steps and intervals in order to estimate the relative pose between two cameras. On
a coarser level, all pairwise pose estimations will be fused into a geometrically consis-
tent network.

We believe the contributions of our work to be multifold:
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Fig. 1: Views from two camerasCa andCb at times t1 and t2 (stacked with transparency). In each
camera view, a walking person defines a plane (marked in red) between his head and foot points in
two time steps. Planes between multiple cameras are related by a homography H , which is used
during our external camera calibration approach. Green arrows show gravity vector examples.

– A layered Markov chain Monte Carlo algorithm for camera calibration to work with
noisy outlier-dominated data.

– Usage of foot-head planes for external camera calibration.
– Extension to the Shortest Triangle Paths Algorithm to incorporate stability con-

straints.

We present the current state of the art in this field in the section 2. Section 3 presents
the underlying mathematical model used for relative pose estimation based on homog-
raphy extraction and decomposition over four points on a plane. It is followed by the
in-depth presentation of our algorithm in section 4. Afterwards will come the results
presentation in section 5 before concluding in section 6.

2 Related Work

Camera calibration is extensively studied as knowledge about the scene geometry sim-
plifies many computer vision tasks, e.g. multi-view object tracking or searching corre-
spondences along the epipolar line for depth estimation. If we assume we have corre-
spondences between image points x̄ci in different cameras Cj , we can use the regular
structure-and-motion approach: combine all x̄ci in a measurement matrix which is fac-
torized into the underlying 3D pointsXi and the motion of the cameras.

Manual techniques have been created such as [1] which uses this technique with
one light source manually moved through the scene, providing one inter-camera cor-
respondence for many frames. In order to provide many correspondences per frame,
calibration patterns could be used such as [2] for intrinsic parameters estimation or [3]
in the case of a camera network. However, such manual procedures can be cumber-
some or even impossible to conduct in certain situations, e.g. surveillance setups where
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cameras are not reachable. An automatic and reliable procedure is thus needed for such
situations.

Automatic inter-camera correspondences have been the solution developed to over-
come those manual procedures. These techniques rely on detecting keypoints and es-
tablishing correspondences based on appearance of a patch around the extract points
[4]. Non-linear optimizations can then be used to improve the precision and quality
of such estimations [5]. However, determining inter-camera correspondences automat-
ically becomes especially hard if cameras have a small field of view overlap (or even
none in a network of cameras), or if they watch in different directions (also called wide
baseline) as analyzed for example by [6]. To focus on the calibration approach, many
methods take given correspondences as input [7, 8]. Very few methods do not require
such knowledge, as [9].

Even though dynamic objects add another layer of complexity, they have been used
and analyzed to extract information of all kinds. Pedestrians, for example, have been
studied in many different fields of computer vision such as in detection task [10] or
for tracking purposes [11]. They also have been extensively used as observations of
inter-camera correspondences in camera calibration [12–19, 7, 20, 9, 8]. Although being
intrinsically hard elements to work with due to their intra-class variety and per-instance
non rigid deformations, they can be used in conjunction with various assumptions or
priors.

Many different methods relying on pedestrian observations have been presented to
solve the intrinsic parameters estimation problem. [17] suggested to extract vanishing
points and line on a single pedestrian. Since vanishing points are sensitive to noise,
other works have built upon it to robustify this approach, such as [18] which detects
leg crossing events in order to extract more accurate foot-head points, or [14] which
proposes a probabilistic approach in the form of a Markov-chain Monte-Carlo process
to handle noise. [13] worked on a different assumption which incorporates a prior about
the pedestrian motion. An important shadow model is added by [12] to extract more
accurate points, with the same goal [15] used a human model.

External camera calibration has also been addressed using pedestrians as basic ob-
servations. [21] proposed to observe soccer players with PTZ cameras for calibration
helped by the particular ground markings of soccer fields. [20] also calibrated PTZ
camera networks but by tracking a single pedestrian walking on a plane, requiring a
known inter-camera correspondence. On another side, [9] showed a work not requir-
ing inter-camera correspondences by working directly on foreground blobs instead of
pedestrians. All these works assumed a planar ground where people walked, [7] went
away from this assumption and proposed camera network calibration on uneven ter-
rains.

The underlying optimization process in camera calibration can take very different
shapes to overcome noisy data. For example as a fully probabilistic approach as in [14].
Certain methods filter outliers based on robust analysis [7]. Others may want to extract
only very reliable points by adding different models to compensate for noise as [12]
which learns a complex shadow model to increase the precision of point extraction or
[15].
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In this work, we do not focus on precise point extraction or assume reliable and
accurate information. This is motivated by the will of being robust in every situation,
even when early processings in the pipeline, such as background subtraction or track-
ing, may fail. By extension, we do not use complexe non-linear refinment as it ask for
accurate data in the first place.

The closest works to our approach are [14] and [9]. [14] proposed a Markov chain
Monte Carlo approach but focused only on intrinsic camera calibration of one camera.
We present a 3-layer cascade of Markov chain Monte Carlo in the different setup of
external network calibration. [9] also follows the idea of analyzing inter-camera corre-
spondences prior to network calibration but relies on a stable ground plane estimation
from person heights.

3 Pose Estimation using Tracklet Correspondences

Our pose estimation is based on the decomposition of homographies Hab into

Hab = Kb(Rab +
1

d
tabn

ᵀ)K−1a (1)

where Rab, tab are rotation and translation of cameras Cb wrt. Ca, and n and d are
orientation and distance of the underlying plane wrt. Ca which maps points according
to x̄b = Habx̄a. Thus, if H can be estimated precisely, the external camera parameters
are known (up to scale which is encoded in d). Furthermore, any plane visible in both
cameras can be used to estimate Rab, tab, just n and d are plane-dependent.

For our scenario, an intuitive idea would be to select the foot points as x̄ from four
pedestrians in two views and compute H (see Fig 2c). However, the planarity might
not be valid and, more important, all foot point correspondences have to be true which
is unlikely for large baselines with low precision. Formally, this plane configuration
would be four inter-camera correspondences, one time instance (intra-camera corre-
spondence), and two cameras, or C41 = (4, 1, 2) as done in [21]. Since Hab has eight
degrees of freedom, the product of the configuration elements has to be 8. Since the
number of cameras is 2, the configuration space is quite limited, so only C22 = (2, 2, 2)
and C14 = (1, 4, 2) would be alternative minimal sampling sets.

Out of these, C14 (Fig 2a) also intuitively aims at determining the ground plane,
but this time from one point visible over time. Compared to C41, it has the advantage
that only one true inter-camera correspondence is needed. However, the configuration
is degenerate if the four intra-camera correspondences are on on a line, which often
occurs during human walking.

We focus on the C22 configuration, which means two points in two frames for
two cameras (Fig. 1 and Fig 2b). Compared to C14, it has the disadvantage that two
inter-camera correspondences are needed. However, by establishing correspondences
between pedestrians instead of points, with stably-localizable head and foot points, we
only need one inter-camera pedestrian correspondence and two time instances where it
is seen.
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Fig. 3: Different configurations for H estimation (magenta plane). Fig 2a shows C14 = (1, 4, 2)
an example of a pedestrian walking (blue track) from which we select four points. Fig 2b C22 =
(2, 2, 2) is the situation used in this paper, with two points extracted at two timesteps and Fig 2c
presents C41 = (4, 1, 2) an estimation of a ground plane using four foot points at the same
timestep.

4 Markov chain Monte Carlo Cascade for likelihood maximization

The presented algorithm takes as inputs m synchronized sequences produced by cam-
eras Ci forming a network N . We assume the intrinsic calibration Ki known. For
automatic temporal synchronization, audio signals could be cross-correlated, and for
intrinsic parameters, automatic techniques, as presented in section 2, could be used.

These sequences will be in first place pre-processed to extract pedestrian tracklets.
These tracklets will be used to produce the so-called foot head points as explained in
section 4.1, similarly to [14, 20, 12].

As a second step, tracklets in different views will be associated in pedestrian pair
hypotheses. These hypotheses will be the basic elements of the pairwise pose estimation
process (section 4.2) which aims at estimating the relative pose density for all camera
pairs. This will be conducted as a Markov chain Monte Carlo procedure which follows
the idea of [14]. Once this density is estimated for every camera pair, we will fuse
the pairwise pose estimates into a consistent network by a triangular structural term
(section 4.3).

Our algorithm is a 3-layer cascade of Markov chain Monte Carlo sampling. Each
layer approximates different posterior densities and uses their estimations to feed on
the next layer. The first layer is at the pedestrian observation level, which will suggest
relative poses for a second layer at a camera pair level. We formulate this global network
optimization as a maximum likelihood problem which will be solved by a last layer of
sampling.

4.1 Pre-Processing

The first step is to detect and track pedestrians to produce pedestrian tracklets. For de-
tection, we use a standard deformable part model as presented in [10] and used the
already trained algorithm provided online and trained on the Pascal VOC dataset [22].
Having the detection bounding boxes, we create the tracklets using the flow algorithm
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proposed in [11] and kindly distributed online by the authors. Please note that the track-
lets might be incomplete or falsely developed. Our approach is designed to simply not
consider these for the calibration in a later steps. The jth tracklet in camera Ci is noted
tij . For computational purpose we filter out all short tracklets with less than 2 seconds
overlap.

Based on these tracklets, we will extract the commonly called foot head points for
every pedestrian at every frame they are seen. To extract such points in a frame f , we
use a naive background subtraction method in the form of a grayscale per-pixel median
filter. Albeit being naive and extremely simple, this background filtering method has
been sufficient. We then compute the principal components of the foreground enclosed
inside the detection bounding box. As humans are mainly distributed along the vertical
axis, itself colinear to the gravity vector, we take the first principal axis vpa and the
center of mass of the foreground pcm to extract two points using it. The head point
is simply computed as pcm + vpa and the corresponding foot point pcm − vpa. This
naive point extraction method is motivated by the will of having a robust algorithm as
accurate points or tracklets may not be available in dynamic environment where lots of
occlusions can occur.

4.2 Pairwise Pose Density Estimation

We will first derive the estimation of the probability density of a relative pose (R, t)
between a camera pair (Ca, Cb), given all correspondences in-between:

pcc(R, t | Ca, Cb) (2)

In this section, we assume that there is no side information from the network. pcc is
modeled as Parzen density over previous estimates of R, t. In order to iteratively refine
pcc, we sample a correspondence from all hypotheses which, in turn, will be used to
compute another R′, t′ sample, as explained later in section 4.2. To guide multinomial
correspondences sampling, we use pcp as described in the following. We apply Bayes’
theorem to transform (2) into:

pcc(R, t | Ca, Cb) =
pcp(Ca, Cb | R, t)p(R, t)

p(Ca, Cb)
(3)

The denominator p(Ca, Cb) is usually considered constant and we do the same for
p(R, t) which would be a prior on the relative pose. We devise pcp as:

pcp(Ca, Cb | R, t) =
∏

(tai ,t
b
j)∈(Ca,Cb)

ppp(tai , t
b
j | R, t) , (4)

Following is the definition of the pedestrian pair probability with the reprojection
error modeled by the Blake-Zisserman distribution:

ppp(tai , t
b
j | R, t) = (δd)φ

√√√√ δd∏
f=1

e−
e(ta
i
,tb
i
,f|R,t)2

2σ2 + ε, (5)
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where e(tai , t
b
j , f | R, t) is the reprojection error between tai and tbj , evaluated at the foot

head points of frame f . δd denotes the tracklet length. φ ∈ [0, 1] is an independence
parameter. As we expect our pedestrian pairs to be correlated, we used φ = 0.5 in
our experiments. ε = 0.01 represents the uniform noise in the data. The reprojection
standard deviation σ has been set to a standard value of 5 pixels.

The reprojection error e at frame f is defined as average error of the respective
head and foot points in both cameras Ca and Cb. To evaluate e for a head or foot point
correspondence (xa,xb), we use R and t to triangulate (xa,xb) to the 3D point X .
After re-projecting X into both camera views, the Euclidean distance to xa and xb is
used for e.

Relative Pose Guided Sampling Having sampled a particular pair of tracklets (tai , t
b
j)

in the previous section, it will be used to generate the next relative pose R′, t′ by sam-
pling with respect to:

prt(R, t|tai , tbj) =
ppp(tai , t

b
j | R, t)p(R, t)
p(tai , t

b
j)

∝ ppp(tai , t
b
j | R, t)pcc(R, t | Ca, Cb)

∝ ppp(tai , t
b
j | R, t)pcp(Ca, Cb | R, t) (6)

The theorem of Bayes is used here again, we assume the denominator constant
again. Note that you could also use it as a prior on the pedestrian pair correspondence
from other information (e.g. an appearance prior). We incorporated the prior p(R, t) =
pcc(R, t | Ca, Cb) ∝ pcp(Ca, Cb | R, t) (thanks to (3)) as an indication of the overall
likelihood of a relative pose with respect to the camera pair.

Density prt will also be modeled as a Parzen density of the previously visited R, t.
Every time correspondences are selected to suggest a new relative pose, they firstly
produce a completely new R, t as explained in section 3 as an exploration step and
incorporate it into the Parzen density estimate. Then R′, t′ is sampled from prt. This
procedure allows us to balance exploration and exploitation with the goal to find likely
solution for (3).

4.3 Network Configuration Optimization

We now have a description of (3) for every pair of cameras (Ca, Cb). We want to
combine them to recover the structure of the network, in other words we want to find
the most likely set of relative poses for each edge that produces a consistent network.
By consistent we mean relative poses that produces triangle stable network. We define
triangle stability by:

e∆ = ‖Id − P ab ◦ P bc ◦ P ca‖f (7)

Where Id is the identity matrix, ‖ · ‖f the Frobenius norm [23] and P ij are 4x4 pose
matrices from Ci to Cj . The smaller e∆ is, the more consistent the triangle is. Due to
the unknown scale that exists between the relative poses, we cannot directly concatenate
them. To overcome this problem we locally solve for the scale, each of the three relative
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poses brings an unknown scale, we fix one to 1 and use a least square solution to obtain
the two left. After rescaling the translation component of the relative poses, they can be
used for comparison.

One could just select the most likely relative pose for each camera pair but it would
probably violate the triangle constraints (e∆ � 0). We formalize this problem as a
maximization for the relative pose set P = {P ab ∀ (Ca, Cb)} which fulfills camera
pairs likelihood pcp and network constraints p∆:

argmaxPp(N | P) =
∏

pcp(Ca, Cb | P ab)

·
∏

p∆(P ab, P bc, P ca) (8)

The first product of pcp is our data term coming directly from the previous step (equa-
tion 4) and reflecting the pedestrian observations. The second product is a structural
term based on e∆ which is modeled as a Gaussian:

p∆(P ab, P bc, P ca) = e
−
‖Id−P

ab◦Pbc◦Pca‖2f
2β2 (9)

We empirically found β = 0.25 for good results. Setting it too low blocks the explo-
ration into local minima and too high does not guide the sampling anymore.

4.4 Gibbs Metropolis Hastings Sampling

We now show how we can maximize (8) using a random walk algorithm. Due to nonlin-
earity and high dimensionality, it is extremely hard to solve this maximization problem
by a direct approach or exhaustive testing. We propose to use the Gibbs sampling ap-
proach tinted with Metropolis Hastings acceptance ratio to walk through the state space.
Our Gibbs sampling approach creates a network state vector SN of n = 1/2 ·m(m− 1)
(m = number of cameras in N ) random variables P ab, each corresponding to the rel-
ative pose of one camera pair. At every iteration, every random variable P ab of the
network state vector SN is updated by sampling it from the distribution

p(P ab | SN \ {P ab}) (10)

In our work, we composed this distribution using the camera pair data term (3) and a
product of the triangle stability term (9) which leads the sampling around locations that
produce consistent network configurations:

p(P ab | SN \ {P ab}) = pcc(P
ab | Ca, Cb)

·
∏

i/∈{a,b}

p∆(P ab, P bi, P ia) (11)

Sampling from this distribution gives us a new stateP ab′. In order to guide this sampling
more strongly towards the optimal solution, we spice the standard Gibbs sampling by
computing an acceptance ratio α as follows:

α =
p(N | SN ′)
p(N | SN )

(12)
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Where SN ′ is the network state vector where P ab has been replaced by P ab′. The actual
state vector SN is updated based on the value of α. If α is bigger than one, which would
mean accepting this new state increases the probability of having a correct network,
we accept the change. Otherwise it means the change will decrease the quality of the
current estimate. In this case, we accept the change proportionally to α (small decrease
in quality have more chances to be accepted than big ones). This process is summarized
in Algorithm 1

Data: Discrete estimation of densities pcc(P
ab | Ca, Cb)

Result: Best network configuration SB

∀ (Ca, Cb) : P ab ← argmaxpcp(P
ab | Ca, Cb);

SN ← {P ab};
SB ← SN ;
for n iterations do

for ∀P ab ∈ SN do
P ab′ ← sample from p(P ab | SN \ {P ab});
α← p(N|SN′)

p(N|SN )
;

if rand() < α then
SN ← SN \ {P ab} ∪ P ab′;

end
if p(N | SN ) > p(N | SB) then

SB ← SN ;
end

end
end
Algorithm 1: Outline of the global network optimization sampling algorithm.

By the random walk, we explore the density in equation (8). Likely solutions are
sampled preferably, but to overcome local minima, unlikely solutions are also explored.
As final network configuration result, we use the most-probable explored state accord-
ing to (8).

4.5 Smallest Stable Triangular Spanning Tree

As not all cameras are connected with each other (no common pedestrians observations)
and some estimates are very hard (unstable camera pair configuration), we add a final
selection step that will select only the best relative poses. Indeed, we computed the
relative pose for every camera pair, yet we only need a subset of it in order to be able
to calibrate it up to one unknown scale. We used an augmented version of the shortest
triangle paths algorithm presented by [24, 25]. This algorithm produces triangle paths
which are triangular connected, meaning it is enough for estimating all the unknown
scales down to one global scale.

For the sake of conciseness, we refer to [25], and briefly explain our extensions: we
incorporate our triangle stability probabilities combined with our pairwise likelihoods
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as edge weights on top of their graphical model. This allows us to find paths that cor-
rectly explain pedestrian observations as well as having a structurally stable network.
We finally differ from their approach by initializing the algorithm from multiple differ-
ent entry nodes instead of the one with highest probability, and by selecting the most
probable paths set as solution.

5 Experimental Results

Fig. 4: The first images of all 7 cameras of the PETS 2009 sequence.

As input data, we take the sequences PETS 2006 S1-T1-C and 2009 S2.L1 (Fig. 4)
consisting of 3’021 frames per 4 cameras, and 795 frames for each 7 cameras respec-
tively. The cameras record a central scene from 360 degrees. As evaluation metric, we
use relative camera pose differences in percentage to the groundtruth. For rotation com-
parison, between estimate R and ground truth R′, we based our distance measure on
[26] and used the Φ5 distance function |Id − R′Rᵀ|f. As scale invariant translation
measure, we compute the angular difference between the translation vectors.

Fig. 5: Top: Only frame pair of PETS2009 with an inlier-only correspondence set. Bottom: Typi-
cal failure containing overfitted outliers.

5.1 Structure-for-Motion as Baseline Comparison

To demonstrate the difficulty of calibrating these sequences, we test the state-of-the-
art structure-from-motion pipeline from VisualSfM [4, 5] to compensate for it not be-
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ing able to take as input grountruth intrinsic calibration, we guided its estimation by
providing the ground truth in the EXIF information of the image. Manual verification
of estimated intrinsic proved it to be correctly estimated. Firstly, a standard Structure-
from-Motion is conducted. The first images of all cameras are matched and their relative
pose is verified with an epipolar model. Although we tried several ways of optimizing
the results, out of the 21 relative inter-camera poses, only one was estimated from inlier
correspondences (Fig. 5) leading to early breakdown of the algorithm.

We then proceeded to use the same input for VisualSfM as our algorithm uses. The
complete list of corresponding foot head points for every hypothesis is fed to Visu-
alSfM. Unfortunately, due to the number of outliers dominating the inliers, only a small
subset of the cameras are estimated. Multiple repetitions have been conducted for the
calibration and the best, selected firstly on the number of cameras then on the actual
error measurements, is shown in Table 1. In order to provide a comparison baseline,

Table 1: Baseline results produced using VisualSfM with the same input as our algorithm.

Dataset Pets2009 S2.L1 Pets2006 S1-T1-C
Remarks Only 4 cameras Only 2 cameras

R t R t
Mean 15.0 35.8 7.1 4.8
Std 9.5 28.3 0 0
Min 3.4 7.4 7.1 4.8
Max 21.2 64.2 7.1 4.8

we added the pedestrian correspondence knowledge for VisualSfM and used only foot
head points of true manually annotated pedestrian correspondences as input. Again only
partial networks are estimated. The results are summarized in Table 2

Table 2: Baseline results produced using VisualSfM and pedestrian correspondence knowledge.

Dataset Pets2009 S2.L1 Pets2006 S1-T1-C
Remarks Only 5 cameras Only 3 cameras

R t R t
Mean 8.9 5.3 5.9 2.7
Std 4.4 1.1 2.2 2.0
Min 2.6 3.2 4.6 0.6
Max 18.0 6.8 8.5 4.6

5.2 Camera Calibration using our Cascade of Markov-Chain Monte-Carlo

To evaluate our algorithm, we compare our estimation to the dataset groundtruths. Two
different scenarios are presented, the first one named whole network will compare ev-
ery estimated relative poses whereas minimal network will evaluate only the minimal
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Fig. 6: Plot of energy during a global optimization. Red shows the pairwise energy, green the
network energy and blue the total energy. The minimal energy is denoted by the magenta line.
(Energies have been smoothed for readability purposes).

relative pose set computed using the triangle path algorithm from section 4.5. The pair-
wise pose estimation process is iterated for 5000 iterations and the global network opti-
mization is conducted for 2500 iterations. On non-optimized Matlab code, the pairwise
density estimation took in average 1 hour per camera pair and the global network opti-
mization a few hours. We believe it to be optimizable and parallelizable.

Table 3 presents the error measures for Pets2009 and Pets2006 datasets.
We can see that the triangle path extraction allows us to increase the quality of the

network on every aspect. Note that Pets2006 dataset has only four cameras resulting in
six different camera pairs, when the minimal network solution needs five camera pairs
to cover the whole network, limiting the selection of better relative poses and thus the
amelioration in results. By comparing the minimal columns of Table 3 and Table 3 to
Table 2, we can see that our algorithm is able to correctly estimate relative poses with
an error similar to what our baseline with groundtruth correspondences knowledge is
able to achieve, however it is to be noted that our approach produces estimates for
every camera. Also note that our algorithm estimates all cameras when the baseline for
Pets2009 only managed to produce estimates for 5 cameras.

As the presented algorithm belongs to the random walk algorithm family, it is inter-
esting to look at the energy variation as shown in Fig 6. It can be seen that the global
minimum may not be at the minimum of either the pairwise or network energies and
sometimes accepting worse relative poses can lead to improving the overall solution by
avoiding local minima.

Table 3: Rotational error relative to groundtruth as percentage to the grountruth.

Dataset Pets2009 S2.L1 Pets2006 S1-T1-C
Network whole minimal whole minimal

R t R t R t R t
Mean 15.7 8.1 10.5 6.1 13.2 6.6 10.3 5.7
Std 10.7 6.5 5.5 4.0 6.9 5.0 7.3 5.2
Min 2.4 0.6 2.4 0.6 3.4 0.8 3.4 0.8
Max 37.5 23.9 20.3 14.4 21.6 13.6 19.0 10.7
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A collateral result from network external calibration is the possibility to match
pedestrians in different views. We computed the Jaccard index between inlier pedestrian
set produced by the groundtruth pose and our estimated pose. We achieve in average
31.3% on the Pets2009 sequence and 25.6% on the Pets2006. Unfortunately, pedestrian
correspondence are not found reliably when the relative pose estimation error is too big
(when < 5%, the average Jaccard index is 64.6% but when > 15% it becomes 0%) but
remarkably, the triangle stability term allows the use of false correspondences for cali-
bration. Figure 8 shows some typical falsely found correspondences: reasonable results
but false due to occlusion, and overfitting during the triangular reprojection.

In a last experiment, we took pedestrian correspondence estimates (pedestrian esti-
mated with likelihood above 1% as shown in Figure 7) and used their foot head points as
input in VisualSfM to obtain a robust relative pose estimation. This is the same process
as for our baseline, except we do not take the inlier pedestrians from the groundtruth
but from our estimation, to see if our algorithm is able to produce such knowledge accu-
rately. The results are shown in Table 4. In Pets2009 sequence, only a subset of cameras
managed to be correctly estimated with errors in the same range as our estimates and
the baseline. Pets2006 produced no correct results for our estimates due to too many
wrong estimated correspondences. It can be seen that non-linear optimizations do not
improve our estimates significantly.

Table 4: VisualSfM results as a post processing over our pedestrian inlier estimation for Pets2009.

Dataset Pets2009 S2.L1
Remarks Only 4 cameras

R t
Mean 9.6 5.8
Std 5.5 2.3
Min 3.5 0.8
Max 18.0 6.5

6 Conclusion & Future Work

We have presented a probabilistically justified algorithm in the form of a cascade of
Markov chain Monte Carlo algorithm and applied it to the task of estimating the ex-
ternal calibration of a camera network by observing unconstrained pedestrians. This
algorithm has many advantages, its probabilistic formulation providing it an adaptabil-
ity property for whoever would like to incorporate more priors (e.g. appearance prior).
A collateral result of a good estimation is the pedestrian correspondences deduction
which can be useful in many surveillance situations and used as prior information for
other processes. Its main quality is its robustness against noisy data due to inexact point
extraction or drifting tracklets and against outlier dominated hypotheses. Lastly, we
think the simplicity of this algorithm allows it to be improved on different aspects such
as the relative pose estimation in itself but also by addressing wider problems such as
camera synchronization or intrinsic calibration.
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Fig. 7: Inlier-correspondence examples after our optimization. Magenta and yellow lines show
respectively corresponding head and foot points. First row shows Pets2009 sequence and the
bottom one: Pets2006.

Fig. 8: Typical false correspondence examples after our optimization, labeled as in Figure 7.
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