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a b s t r a c t

Motion segmentation refers to the task of segmenting moving objects subject to their motion in order to dis-

tinguish and track them in a video. This is a challenging task in situations where different objects share similar

movement patterns, or in cases where one object is occluded by others in part of the scene. In such cases, un-

supervised motion segmentation fails and additional information is needed to boost the performance. Based

on a formulation of the clustering task as an optimization problem using a multi-labeled Markov Random

Field, we develop a semi-supervised motion segmentation algorithm by setting up a framework for incorpo-

rating prior knowledge into the segmentation algorithm. Prior knowledge is given in the form of manually la-

belling trajectories that belong to the various objects in one or more frames of the video. Clearly, one wishes to

limit the amount of manual labelling in order for the algorithm to be as autonomous as possible. Towards that

end, we propose a particle matching procedure that extends the prior knowledge by automatically matching

particles in frames over which fast motion or occlusion occur. The performance of the proposed method is

studied through a variety of experiments on videos involving fast and complicated motion, occlusion and

re-appearance, and low quality film. The qualitative and quantitative results confirm reliable performance on

the types of applications our method is designed for.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

In a still scene where objects are visually blended to the back-

round, such as animal camouflage, it is difficult or impossible to dis-

inguish the objects from the background. In such a situation, motion

nformation is a strong clue for visual perception of the surround-

ng environment. Although the process of motion perception appears

traightforward to the human visual system, it is a difficult problem

rom a computational perspective. Humans are continuously detect-

ng, tracking and registering surrounding objects, and to them occlu-

ion, disocclusion and different motion patterns seem less of an is-

ue. Dissimilar to humans, these could be extremely challenging for

computer-based method.

An application where we have to deal with fast and complicated

otion patterns is the analysis of an infant’s motion. Such an anal-

sis is needed frequently in the medical world, for example in our

pplication that is to predict cerebral palsy (CP) at an early stage. To
✩ This paper has been recommended for acceptance by Leonid Sigal.
∗ Corresponding author. Tel.: +47 450 88 591.
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o so, we need to extract the motion information out of videos of in-

ants at 2–4 month postterm age. Over the past few years, a number

f computer-based movement assessment tools have been developed

1–3]. However, there are problems limiting their practical use. First,

hey must be installed in a controlled environment. Second, they use

nstrumentation that might affect the infant’s body movements. Fi-

ally, experts are needed for interpretation and analysis of the results.

ecently, our research group has been studying the prediction of CP

sing a normal 2D monocular camera by a simple frame differencing

pproach without any need for instrumentation on the infant [4–7].

hile these early studies show great promises, the algorithms used

re sensitive to lighting conditions, clothing and skin color. In addi-

ion, the video data is aggregated into movement variables or features

hat provide limited clinical insight [8].

To overcome these problems, we are interested in extracting

otion information out of a video and analysing this motion informa-

ion to separate moving objects (in our case the infant’s body parts)

rom the background and from each other. In situations like our appli-

ation, where the objects share similar motions, the motions are fast

nd with complicated patterns, and occlusion happens frequently,

otion cannot be informative enough by itself. Thus, additional in-

ormation is needed, in our case some prior knowledge about the
segmentation with particle matching, Computer Vision and Image
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assignment of the trajectories. The prior knowledge in the present

application is manual labeling of the infant’s body parts in one

or more frames of the video. Clearly, one wishes to minimize

this manual labor such that the segmentation procedure is as au-

tonomous as possible. Incorporating prior knowledge is challeng-

ing, and is addressed in Sections 3 and 4. In [9] we proposed an

energy minimization technique to incorporate prior knowledge into

the segmentation procedure. In the current paper, we improved this

motion segmentation method by incorporating an multi-scale parti-

cle matching procedure into the method. As a result, less prior knowl-

edge is needed.

2. Related work

Motion segmentation is the task of segmenting moving objects

from an image sequence subject to their motion over time. While

the term segmentation does not specify which information is used to

obtain the result [e.g. the definition in 10, Section 2.1], the common

understanding of motion segmentation is that it is an unsupervised

clustering process. The origin lies in the factorization of the motion

of a moving affine camera observing a static scene: The measure-

ment matrix W, which contains observed point positions over time

forming trajectories, can be decomposed into the static 3D shape

S of the scene and the camera motion M over time. Vice versa, a

static camera may observe one rigid moving object and obtain its

M and S. However, if a dynamic scene is observed, multiple mo-

tions occur rendering the decomposition impossible. The segmenta-

tion into independent motions finds the reconstruction of motion

and shape of all objects and the assignment of trajectories to the

objects.

Earlier work focused on finding subspaces in W and assigning

the trajectories to them, e.g. with the generalized PCA [11]. Subse-

quent work exploited sparsity in the manifold of the observed point

trajectories [12] or in features generated from them [13]. More re-

cently, Shi et al. [14] integrated temporal smoothness of the trajec-

tories into the optimization by a discrete cosine transform (DCT)

representation. While these subspace-based approaches are mathe-

matically elegant and show good results in benchmarks such as the

Hopkins 155 [15], especially missing data poses a serious problem:

Such data has to be interpolated prior to the segmentation which

becomes infeasible once the sequences become long and missing

data dominates, which occurs e.g. due to occlusions. An exception

is the approach of [16] which base their subspace-based method on

many two-view motion observations. Due to the nature of this algo-

rithm, missing data can be replaced by zeros without biasing the final

result.

In contrast to the subspace-based approaches, Brox, Fradet, and

Dragon, [17–20] analyze pairwise or higher-order [21] relationships

between trajectories which are then aggregated to an affinity matrix

A encoding the trajectory similarity. A final spectral clustering [22]

step of A finds the association of trajectories to motion segments.

Brox and Malik [17] use similarity in translational motion and spatial

distance as affinities to cluster trajectories obtained from particle

trajectories. We follow several concepts of theirs, but use an energy-

based formulation instead of affinities. Fradet [18] randomly samples

more complex affine motion models and use J-Linkage [23] as final

clustering of trajectories having many common inliers. Similarly,

Dragon et al. [19,20] combine multiple motion hypotheses of frame-

to-frame motion segmentation allowing complex motion models

and real-time processing. We adopted their idea of using multiple

time scales to propagate motion knowledge through occlusions.

Since all these approaches only analyze data pairs instead of the

subspaces formed from the complete data, missing data is not an

intrinsic problem: If no affinity may be obtained for a trajectory pair,

it is set to zero – the lowest possible affinity. Since spectral clustering
Please cite this article as: H. Rahmati et al., Weakly supervised motion

Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.07.004
nly enforces high affinities to be in the same segment but does not

enalize low affinities within one, it is especially suitable for this

lustering problem. As alternative to the final clustering step, an

nergy-based optimization was proposed by Lezama et al. [24]. This

llowed them to specify a static depth ordering constraint into the

lustering.

In our approach, we integrate prior knowledge about the assign-

ent of trajectories into motion segments. However, directly modi-

ying A to prevent trajectories with the same prior label to be clus-

ered into different segments has undesired biases which leads to

oor results: Since spectral clustering minimizes the inter-segment

ut through A, weighted by the sum of intra-segment weights [22],

weaking local weights creates a global bias which results in non-

ntuitive results.

Related to adding hard constraints to clustering is the field of

ransductive Learning which is learning a classifier from partially la-

eled data with its only purpose being to classify the rest of the data.

egarding Spectral Clustering, Zhou and Burges [25] treat initial label-

ng as a second “view” on the data with a second graph which is com-

ined with the regular affinities. However, the labeling constraints

ecome soft constraints and setting the penalty for a label violation

o a high value leads to an undefined optimization of the unlabeled

ata.

Another term for the same problem is weakly supervised clus-

ering. Tuzel et al. [26], extended mean shift clustering to add

ard labeling constraints by projecting the input data to a high-

imensional space in which all hard constraints are fulfilled. While

his approach shows promising results and does not have the afore-

entioned weaknesses, the choice of the Kernel is critical but not

ntuitive.

In our work, we overcome the no-prior-labeling limitation by for-

ulating the motion clustering task as a multi-label Markov random

ield (MRF), similar to graph-cut-based image segmentation [27]. We

se the generalized Potts model, thus encouraging large motion dif-

erences between segments and similar motions within segments.

his may seem straightforward, but to the best of our knowledge such

scheme has only been proposed before by Lezama et al. [24]. They

sed an MRF to specify depth constraints, but initial labels were not

ncorporated.

The common video segmentation approaches use motion as

n important prior, but in contrast to the motion segmentation

aradigm, this prior is only evaluated on a frame-to-frame level

s, e.g., by Sun et al. [28]. In contrast, we segment sparse mo-

ion information from trajectories which last over many frames. The

emi-supervised approach of [29] makes use of an MRF with the

ptical flow and the class label as hidden variables. Unary ener-

ies are obtained from foreground and background priors, and bi-

ary energies enforce spatial and temporal smoothness wrt. the

abels and the motion. Grundmann et al. [30] presented an approach

for unsupervised video segmentation. They oversegment the video

with an extension of Felzenzwalb’s image segmentation approach

[31] and merge these segments with agglomerative clustering until

a pre-defined distance threshold is reached. While they also incor-

porate motion features from the optical flow, their approach does

not use long-time motion information. In the same scenario, Zhang

et al. [32] tackle the problem of extracting the primary object of a

sequence by using an objectness detector [33] as prior to create mul-

tiple hypotheses. The best hypothesis is chosen from the best path

through a directed acyclic graph having unary edges from object-

ness score and binary ones describing appearance and shape simi-

larity of proposals from two successive frames. Although the results

of these works seem convincing, the evaluation sequences, e.g. the

GT-SegTrack database, only contain objects with big motion bound-

aries which do not occur in our sequences. Furthermore, they are one

magnitude shorter (21–70 frames) than our sequences (1000 frames)

and thus not suitable for our data.
segmentation with particle matching, Computer Vision and Image
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. Integrating prior knowledge into motion segmentation

Before going into details about how the prior knowledge is in-

egrating to the motion segmentation, there should be some words

bout how the trajectories are developed. The trajectories are devel-

ped as proposed by Sundaram et al. [34]; first, LDOF [34] is used to

btain the flow fields. Then, flow fields are concatenated to develop

rajectories, which are initialized by a grid of points located on the

rst frame. A trajectory could terminate because of occlusion or in

ase of fast motion, and new trajectories are developed if there is an

rea without any trajectory on it.

.1. Energy formulation

This section describes the energy minimization framework used

o segment the trajectories into separate groups. Let G = (S,N ) be

n undirected graph where each vertex s ∈ S represents a trajectory,

nd each edge (s, r) ∈ N models the relation between neighboring

rajectories. Each edge has a non-negative weight, a function of simi-

arity of the vertices it connects. The motion segmentation is obtained

hrough a multi-label graph-cut that minimizes an energy associated

ith G. There are different ways to measure the quality of a segmen-

ation. In general we want the elements within a segment to be sim-

lar, and elements between different segments to be dissimilar. This

eans that edges between two vertices in the same segment should

ave high weights, and edges between vertices in different segments

hould have lower weights.

For the set S, an acceptable segmentation results in n subsets Oi ⊆
such that Oi ∩ O j �=i = ∅ and

⋃
i∈{1,...,n} Oi = S . Similar to its use in an

lready extensive image segmentation literature [35–38], the cost of

cut can be defined with an energy functional of the following type:

(L) =
∑
s∈S

D(s, L(s)) +
∑

(s,r)∈N
V(s, r, L(s), L(r)), (1)

here L : S → {1, 2, . . . , n} assigns a label to each trajectory in the

et. The data term D is a data penalty function that assesses the rel-

vance of individual trajectory labels (see Eq. (9)), and V is an inter-

ction potential that assesses the consistency of pairs of trajectories

see Eq. (11)). The neighboring set N is defined as

= {(s, r)|s, r ∈ S and dsp(s, r) ≤ ε} (2)

here dsp(s, r) = 1
nc(s,r)

√∑
t |xs(t) − xr(t)|2 is the average spatial Eu-

lidean distance over the common frames of the two trajectories xs

nd xr, with nc(s, r) the number of frames that s and r have in com-

on. A large neighborhood, controlled by ε, decreases homogeneity

f the segments. If the neighborhood is too small, on the other hand,

he chance of getting trapped in a local minimum is high. We empir-

cally found the threshold ε = 10 pixels to be an appropriate choice.

inally, the cut with minimum cost is obtained by minimizing this

nergy functional as proposed in [39].

.1.1. Trajectory similarity

Since trajectories belonging to the same object move similarly and

lso tend to be spatially closer than trajectories with different asso-

iations, the measure for trajectory similarities contain two factors.

ne includes motions information and the other spacial distances as

ollows:

2(t, s, r) = d̄sp(s, r)d2
mot(t, s, r), (3)

, d̄sp and dmot are the total, normalized spatial and normalized mo-

ion distances at time t, respectively, defined in the following.

Unlike [17], we normalize the spatial distance by a factor that

ounts the number of common frames (i.e. during which both tra-

ectories exist):
Please cite this article as: H. Rahmati et al., Weakly supervised motion

Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.07.004
s̄p(s, r) = dsp(s, r)

δc(s, r)
, (4)

here δc(s, r) = log (nc(s, r) + 1). This takes into account that the

ore frames two trajectories have in common the more reliable the

esult is. Trajectories terminate in case of occlusion or fast motions. In

ny of these situations, the optical flow is likely to be temporarily in-

ccurate, affecting short trajectories much more than longer ones. In

ddition, longer trajectories are richer in their motions and thereby

arry more information in regard to similarity. Therefore, it is rea-

onable to put more weight on similarities obtained over a longer

un.

The normalized motion distance is defined as follows:

2
mot(t, s, r) = ‖vs(t) − vr(t)‖2

5σ 2(t, s, r)
, (5)

here vs(t) is the aggregated motion of a trajectory s over 5 frames
s(t) = xs(t + 5) − xs(t). In this equation, σ has to be defined such

hat it can deal with both fast and slow motions in an even-handed

anner. In particular, local variations among velocities within a seg-

ent should be tolerated more if motions in the segment are chang-

ng more rapidly. Therefore, σ is defined in a way similar to [17], as

ollows:

(t, s, r) = min
a∈{s,r}

4∑
t ′=0

σv(xa(t + t ′), t + t ′), (6)

here σ v is the variation in a local flow field. In our case it is the stan-

ard deviation of the flow field in a 10 pixel × 10 pixel window cen-

ered on the trajectory at each frame. This assures that small changes

n cases with slow motion has more importance than cases with fast

otions.

As long as two objects move next to each other, they share simi-

ar motions, and it is impossible to separate them as different objects.

ut as soon as they start to move differently, they could be distin-

uished. In order to exploit this information, the similarity between

wo trajectories considers the instance when they are differ the most.

o,

(s, r) = max
t

d(t, s, r). (7)

Finally, the trajectory similarity between two trajectories is de-

ned as:

(s, r) = exp (−d2(s, r)). (8)

e set w(s, r) = 0 for trajectories that have no temporal overlap.

.1.2. Data term

Let OL(s) be the set of trajectories that are initially assigned la-

el L(s). SI = ∪i=1:nOi is then the set of trajectories that are initially

abeled. Let I(s) ∈ {1, 2, …, n} be the true label of these trajectories.

hen, the data term in Eq. (1) is defined as

(s, L(s)) =

⎧⎨
⎩

0 if s ∈ SI ∧ L(s) = I(s)

K(s) if s ∈ SI ∧ L(s) �= I(s)

g(s, L(s)) if s /∈ SI

(9)

here K(s) = 1 + ∑
r:(r,s)∈N V(s, r, L(s), L(r)) is a large value that en-

orces trajectories which are initially labeled to preserve their labels

uring the optimization process. g(s, L(s)) is a measure of dissimilarity

etween trajectory s and subset OL(s).

The prior knowledge gives information about assignment of tra-

ectories that are initially labeled. But, we also use the prior knowl-

dge to assign a likelihood of belonging the other trajectories to each

f the segments. To do so, the penalty of assigning a trajectory to a

egment which its initially labeled trajectories are inconsistent with

hat trajectory should be high, and low otherwise. So, we define
segmentation with particle matching, Computer Vision and Image
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initial frame frame Kframe M frame N

(a) basicmoseg

initial frame frame Kframe M frame N

(b) improved moseg

Fig. 1. Segmentation for a synthetic example. A set of trajectories belonging to two

segments are shown, each row represents a trajectory over time that starts at a frame

and may end at another frame. The shapes show the true assignments while the colors

are the decisions of the motion segmentation, the ideal segmentation leads to blue

circles and red squares. Those with black circle in the middle are the manually labeled

trajectories. The double-sided arrow shows the matched particles by improved moseg.

(For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
g(s, L(s)) as negative log-likelihood of the average trajectory similarity

w(s, r):

g(s, L(s)) = − log

(
mean
r∈OL(s)

(w(s, r))γ
)

. (10)

In this equation the operator mean is used to compute an average

similarity between a trajectory and a set of labeled trajectories, it

could be either arithmetic (what we used) or geometric. In addi-

tion, since w takes values in [0, 1], the negative log is a common

way of transforming such a similarity value to an energy value, as,

e.g., in [17].

3.1.3. Pairwise term

We define the pairwise term in Eq. (1) as:

(s, r, L(s), L(r)) = q(L(s), L(r)) f (w(s, r)) (11)

where f is a monotonically increasing penalty function of the trajec-

tory similarity w(s, r). q(L(s), L(r)) denotes the way trajectories are

compared to each other based on their labels. We use

q(L(s), L(r)) = 1 − δ(L(s), L(r)), (12)

where δ is the Kronecker delta function. If two trajectories are as-

signed to the same segment, no pairwise penalty is considered in the

energy functional (1), and if they are assigned to different segments

a penalty equal to f(w(s, r)) is added.

Based on the definition of q, it can be inferred that f must be a

monotonically increasing function of w(s, r) because it should penal-

ize similar trajectories assigned different labels, and no penalty is due

if they are assigned the same label. Given that 0 ≤ w(s, r) ≤ 1, f is de-

fined as the negative log-likelihood of the counter probability of w

which is weighted by φ:

f (w(s, r)) = − log (1 − (w(s, r))φ). (13)

If two trajectories are similar, w(s, r) → 1 and thus f(w(s, r)) → ∞. If

they are dissimilar w(s, r) → 0 and f(w(s, r)) → 0. As a result, the opti-

mization of 1 tries to put similar trajectories into the same segment.

γ and φ non-linearly balance D and V in Eq. (1). They are empirically

set to γ = 0.1 and φ = 0.001.

Due to occlusions and fast motions, trajectories are asynchronous

and span different temporal windows. Considering just trajectories

that last for the whole shot would lower the number of tracked

points, leaving us possibly even with an empty set. Therefore we ob-

tain the pairwise energy for all trajectories that have at least one

frame in common. Due to transitivity, it can be expected that even

trajectories that share no frames can still be paired [17].

It would be desirable to penalize intra-segment dissimilarity

analogue to penalizing inter-segment similarity. However, due to

non-submodularity, the overall energy becomes intractable and the

results become worse.

4. Particle matching

Similar to extensive graph-based image segmentation work [35–

38], our motion segmentation method needs prior knowledge to base

the segmentation upon. This prior knowledge is the assignments of

a small subset of trajectories belonging to each segment. The true

assignments of these trajectories are shared with the optimizer. Un-

like image segmentation where the prior knowledge lasts during the

optimization problem, a cumbersome problem with trajectory seg-

mentation is that the initially labeled trajectories might not last for

the whole shot. This happens in case of occlusions or a fast motions.

So all trajectories of a segment may end; consequently, there is no

trajectory left to represent that segment. Due to having no common

frames, the data term defining the energy of assigning trajectories to

that segment is very high for trajectories that are initialized from that
Please cite this article as: H. Rahmati et al., Weakly supervised motion

Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.07.004
oment on, while it is smaller for the other segments that have com-

on frames with those trajectories. So, it is more probable that these

rajectories would not be labeled as belonging to the terminated seg-

ent although that segment might be the right one.

To overcome this problem, in [9] we provided more prior knowl-

dge by manually labeling trajectories in every 500th frames. In this

ection, a new method is presented to overcome the problem as well

s fulfilling our ultimate goal which is to perform motion segmenta-

ion with as little user interactions as possible. For simplicity, we re-

er to our motion segmentation excluding particle matching by basic

oseg [9], and for motion segmentation including particle matching

y improved moseg.

.1. Matching by multi-scale optical flow

Since trajectories belonging to an object are terminated due to fast

otion or occlusion, our idea is to redetect the objects when reap-

earing. Fig. 1 demonstrates how redetecting the objects would im-

rove the segmentation results. A synthetic example is created; each

ow represents a trajectory over time that starts at a frame and even-

ually may end at another frame. The trajectories belong to two dif-

erent segments, the shapes show the true assignments while the col-

rs are the decisions of the motion segmentation method. The ideal

egmentation results in blue circles and red squares. As can be seen,

s long as there are some manually labeled trajectories representing

ach of the segments at a frame, both methods end up with the cor-

ect assignments in that frame. Although in frame M where the circle

egment loses all of it is manually labeled trajectories, the segmen-

ation is still correct because there is a trajectory that has got correct

ssignment because of having common frames with the manually la-

eled ones (this could happen in case of partial occlusion). The main

roblem with the basic moseg is in situations where not only all the

anually labeled trajectories for a segment are terminated, but there

s no trajectory left that has common frames with them; for exam-

le, in case of complete occlusion. This happens in frame K where

he basic moseg leads to a wrong segmentation. On the other hand,

he improved moseg keeps up with the correct segmentation because

t could find a particle in frame K that matches an initially labeled

article. In fact, its good performance is due to extending the
segmentation with particle matching, Computer Vision and Image
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anually labeled trajectories by finding new ones that match

hem.

Improved moseg tries to extend the prior knowledge by develop-

ng new trajectories that could last over occlusions. These trajectories

re added to the trajectory set and since they are developed from a

anually labeled frame, they get the true assignment and are used

s prior knowledge. Then, segmentation is applied. These new tra-

ectories are developed in two steps. First, objects are redetected by

nding matched particles, then new trajectories are initialized for the

atched particles. In order to redetect the objects, we obtain optical

ow fields over multiple time scales. In other words, every tth frames

s compared to the manually labeled frame and a flow field is calcu-

ated for each of them, matched points are found afterwards. In our

xperiments we set t = 10.

Let us suppose that the flow field from the labeled frame t0 to

rame t is estimated, the next step is to derive matched points be-

ween these two frames. To do so, we initialize points in the labeled

rame, and try to obtain matches for each of those points in frame t. To

educe the cost of matching and also because of unnecessary match-

ng of points with no structure in their neighborhood, just points are

nitialized that show structure in their vicinity. To measure the struc-

ure, the structure tensor for a point in the image, x, at each channel

s obtained as follows:

= G ∗
[

I2
x IxIy

IxIy I2
y

]
(14)

here Ix and Iy are the image derivatives in x and y directions, re-

pectively, and G is a Gaussian kernel function centered on point x

ith standard deviation σ = 2. Then, the structure tensors of differ-

nt channels are added up (here there are three channels, one for each

olor) to build the total structure tensor. Finally, points that second

igenvalue of their total structure tensor are smaller than a percent

f average second eigenvalue for the whole image are removed from

nitialization.

The matches for initialized points are obtained by propagating

ach point in the labeled frame to frame t using the relevant forward

ptical flow field w(t0, x(t0)) := (u, v)T via the following formula:

ˆ(t) = x(t0) + w(t0, x(t0)). (15)

here x̂(t) is the match for x(t0) in frame t.

This will find a match for each of the points in the labeled frame.

ut due to occlusion and possibility of wrong motion estimation in

he optical flow field, unreliable matches must be removed. To do

o, we use the backward flow field, the flow from t to t0. There are

arge inconsistency between the forward and backward flow nearby

he optical flow boundaries and occluding area [40]. So, forward and

ackward flow fields are compared to each other. If they are not con-

istent for an specific point, either that point is occluded or the es-

imated flow field is not reliable. In either cases the match must be

gnored. Let ŵ
(
t, x(t)

)
:= (û, v̂)T be the backward flow field, for a

on-occluded point with w(t0, x(t0)) = −ŵ(t, x(t0) + w(t0, x(t0))).

ut because of inaccuracy in the flow estimation, we consider a toler-

nce bound such that if the difference of backward and forward flows

xits this bound we ignore the match. As long as the following in-

quality is valid, a match could be valid:

w + ŵ|2 < 0.01(|w|2 + |ŵ|2) + 0.5, (16)

s it is evident from this equation, the tolerance bound is proportional

o the motion size for the subjected point, and the larger the motion,

he more error is acceptable. We also ignore matches on the motion

oundaries to prevent drifting. Therefore matches with

∇u|2 + |∇v|2 > 0.01|w|2 + 0.002 (17)

re deleted. This matching procedure is repeated for every tth frame

rom the manually labeled frame, and finally the match set is the set

f all these matches.
Please cite this article as: H. Rahmati et al., Weakly supervised motion
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To accomplish the second stage, that is to establish new trajecto-

ies on the matched points, we employ the same procedure as for the

nitialized points on the first frame. So, for each matched point on

rame t a new trajectory is created using the flow field of succeed-

ng and preceding frames. Since the new trajectories are developed

n matched point, they get the same label as their matches on the

anually labeled frame, and therefore termination of initially labeled

rajectories are compensated by creating these new trajectories.

. Tracking based on segmentation

Along side segmentation, tracking is another important issue.

lthough there are many tracking algorithms already providing as-

onishing results on the type of sequences for which they have been

esigned for, we experimentally found none of them to perform suffi-

iently well on the cerebral palsy problem. The reasons are manifold:

ast motions, high nonrigidity, frequent changes in appearance, etc.

or example TLD [41], despite being fast and reliable for many appli-

ations, fails to track the limbs (upper two rows of Fig. 13). Therefore,

e propose a motion segmentation based tracker, which tracks each

f the objects using all trajectories belonging to the segment O re-

ated to that object. We could initialize our tracker manually, or by

tarting it from the center of mass of all trajectories in that segment

t a labeled frame. Tracking using the location of the center of mass of

would fail due to discontinuity from partial occlusions. Instead, an

terative procedure is used to update the tracking results, as follows.

or each segment O and each time step t, we define the subset of all

rajectories s ∈ O that are visible at t and t + 1 as S(t). Let xs(t) and
s(t + 1) denote the respective locations of s. Then, the tracking result

is updated iteratively using the average motion of the trajectories:

(t + 1) = x(t) + 1

|S(t)|
∑

s∈S(t)

(xs(t + 1) − xs(t)). (18)

ince Eq. (18) builds the update step by exploiting a large number

f trajectories, it can filter out noise and unreliable trajectories, as

ong as their effects remain small compared to that of the majority of

orrectly labeled trajectories.

. Experimental results and discussion

In all of the experiments in this section we used the dense optical

ow proposed by Brox and Malik [17] to generate sparse trajectories

ith region density of 2.5%. Two different data sets are used to study

he performance of our proposed methods. First, as the primary mo-

ivation for starting this work was to largely automate the assessment

f infant general movements for the prediction of cerebral palsy, a set

f infants’ videos are studied in more details. Second, in order to in-

estigate the applicability of our method, it is tested on a standard

enchmark.

.1. Performance on videos of infants

In all experiments in this section, we used the video set-up that

as used in St. Olavs Hospital, Trondheim, Norway. During the ex-

eriments, we analyzed the first 1000 frames of 10 video sequences

howing different infants carrying out different motions (Fig. 2).

hese sequences are a magnitude longer than the Hopkins 155 [15]

nd the Freiburg-Berkeley [42] dataset with an average length of 30

nd 245 frames, respectively. As ground truth, we manually anno-

ated a dense segmentation of every 250th frame as displayed in

ig. 3. Fig. 5 shows the average length of the trajectories of 10 se-

uences used in this study. As it can be seen, due to occlusions, fast

nd complicated motion patterns, the trajectories last just for 96.5

rames in average.
segmentation with particle matching, Computer Vision and Image
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Fig. 2. Overview of the 10 sequences used in our experiments.

Fig. 3. Seq. 1 ground-truth segmentation for frames 1, 50, 200, 300 from left to right.

Fig. 4. Seq. 1 segmentation results of [17] for frames 1, 50, 200, 300 from left to right.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

sequence number

av
er

ag
e 

le
n

g
th

Fig. 5. Average length of the trajectories in number of frames for different sequences.
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6.1.1. Segmentation

Fidgety Movements assessment is a strong cue for CP prediction.

“Fidgety movements are defined as an ongoing stream of small, cir-

cular, and elegant movements of neck, trunk, and limbs in all direc-

tions” [43]. Based on this definition, it is crucial to capture the mo-

tions of the body parts in very fine details in order to predict CP. As

it is visible from the ground truth (Fig. 3) the goal of segmentation

in our application is to capture the motion of six different segments

representing hands, feet, head and trunk.

Fig. 4 shows the segmentation results for [17] which is an unsu-

pervised technique. It is not hard to discover that this method could
Please cite this article as: H. Rahmati et al., Weakly supervised motion

Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.07.004
eparate only very distinct motions from each other, and most of the

rajectories are assigned to the background. Its poor performance can

ardly be criticized. Fast and complicated motion patterns of body

arts makes the segmentation task challenging. Additionally, parti-

les on the same desired segment move quite differently and with-

ut additional knowledge motion is not a strong enough cue to meet

he segmentation demands. This additional knowledge could be pro-

ided as a set of prior knowledge carrying information about the cor-

ect assignment of a subset of trajectories representing the desired

egments.

We integrate this prior knowledge to our segmentation algorithm

y manually labeling a small subset of trajectories as shown in Fig. 7.

or all experimental results in the followings, for each sequence two

rames (1 and 500) are manually labeled and fed to the basic moseg,

hile there is only one manually labeled frame (the first frame) used

n improved moseg. Frames 250 and 750 are considered for evaluation.

ig. 6 shows the rate of trajectories used as prior knowledge. As it in-

icates, 5% of the trajectories are being a priory labeled for the basic

oseg, and just 2.6%, for improved moseg. Considering the segmenta-

ion difficulty of this application, these numbers are quite small.

Because our method is the first semi-supervised motion segmen-

ation approach, for the sake of comparison, we use the prior label-

ng as naive baseline. We use the same prior knowledge as the basic

oseg and without applying any segmentation method the results in

50th and 750th frames are compared with the ground truth. To ob-

ain a measure of segmentation accuracy we calculate the F-measure

etween each segmented region ci and each ground truth region gi is

efined as:

i, j := 2|ci ∩ gj|
|ci| + |gj| . (19)
segmentation with particle matching, Computer Vision and Image
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Fig. 6. Percentage of the trajectories used as prior knowledge for different sequences

in blue for two frames labeled and brown for just the initial frame labeled. (For inter-

pretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

(a) frame 1 (b) frame 500

Fig. 7. Initial labeling and the additional labeling at frame 500.
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here |.| denotes the size of each set. The average F-measure is

hown for four cases in Fig. 8: basic moseg with one and two a priory

abeled frames, the baseline, and the improved moseg with just one

riory labeled frame. Poor results of the baseline indicates the level of

omplexity that the segmentation methods are dealing with. Despite

eing a challenging problem, our segmentation methods have man-

ged to perform reliably. The basic moseg with one labeled frame as a
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ig. 8. The average F-measure for different sequences. Given are the results for the segmentat

rames in blue, improved moseg with one labeled frame in yellow and for the baseline in br

eferred to the web version of this article.)
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riory has gained 77.62% segmentation accuracy, increasing the prior

nowledge to two labeled frames boosts up the results to 94.92%.

urthermore, the improved moseg outperforms the basic one by ob-

aining 96.34% accuracy with using just one labeled frame as prior

nowledge.

Fig. 9 shows a qualitative overview of our segmentation results for

he 10 sequences, a more detailed overview can be found in Figs. 15d

nd 16. For a more profound study, segmentation results for one of

he sequences are shown in the lower two rows of Fig. 10 alongside

ith results of the baseline in the upper two rows. It is clear that the

aseline in itself performs poorly, while our method exhibits signifi-

antly better performance.

Occlusion is a longstanding problem in motion segmentation.

rames 650–800 of Fig. 10 shows a case of severe occlusion where

he head is occluded by both hands. As it can be seen, the segmen-

ation remains correct and in frame 950, the new trajectories in the

ccluded area on the head are labeled correctly. Partial occlusion is

ess of a problem for our proposed methods: there are some trajec-

ories left that can still stand in for the terminated ones. These are

oined by novel trajectories upon the reappearance of the previously

ccluded region. In case of a complete occlusion, trajectories could be

inked to each other by providing further manual labeling for basic

oseg, or by using improved moseg that propagates the initial labels.

In sequence 5 the infant rolls to the right side, therefore, many of

priory labeled trajectories terminated, this weakens the basic moseg

erformance. On the other hand, the improved moseg overcomes this

roblem by redetecting matched particle when the infant goes to a

ormal situation where all body parts are visible. This can be seen in

ig. 11 where at frame 550 during rolling to the side, the head and the

ight foot are occluded and the initially labeled trajectories for these

egments are lost. Later on at frame 750 where the baby roles back

o the normal situation, we could see that the basic moseg wrongly

ssigns the trajectories on the head and the left foot to the left hand

nd the left foot, respectively. However, the improved moseg performs

correct segmentation by re-matching the particle to those in the

abeled frame.

.1.2. Tracking

When it comes to human motion analysis it may be straight for-

ard to apply pose estimation approaches, but for application of
6 7 8 9 10
 number

ion of basic moseg with one manually labeled frame in magenta, two manually labeled

own. (For interpretation of the references to color in this figure legend, the reader is

segmentation with particle matching, Computer Vision and Image
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Fig. 9. Overview of the segmentation results of our basic moseg for all sequences in frame 250. and represent trajectories belonging to right hand, left hand, right

leg, left leg, head and trunk, respectively.

(a)

(b)

Fig. 10. Seq. 1 segmentation results for frames 1, 50, 200, 300, 650, 700, 800 and 950 from top left to down right. (a) shows the results for the baseline where no segmentation

method is applied, and (b) is the results for the improved moseg method. Frames 800 and 950 have been anonymized after the segmentation. and represent

trajectories belonging to right hand, left hand, right leg, left leg, head and trunk, respectively. in the first row shows trajectories which are not assigned any labels.

Fig. 11. Segmentation results of sequence 5 in frames 1, 550 and 750. The upper row is for the basic mosec with frames 1 and 500 as prior knowledge, and the lower row for

improved moseg with only frame 1 as prior knowledge.

Please cite this article as: H. Rahmati et al., Weakly supervised motion segmentation with particle matching, Computer Vision and Image

Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.07.004
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Fig. 12. The normalized Euclidean tracking error of basic moseg, improved moseg, TLD, CSK, and DFT. Results are the average over all six body parts and all 10 sequences. All errors

are normalize with the size of the images.

Table 1

Ratio of average number of frames with no tracking over all

sequences and segments.

TLD Basic moseg Improved moseg CSK DFT

12.46% 0.38% 0% 0% 0%
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P detection it is important to capture the body parts motions in

ery fine detail. Because pose estimation methods have skeleton con-
ig. 13. Seq. 1 tracking results of TLD (a) and of proposed method (b) for frames 1, 50, 250, 35

ow, and and in the lower row represent track for right hand, left hand,

Please cite this article as: H. Rahmati et al., Weakly supervised motion
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traints as additional prior while our method has the same input as a

racker, we compare the performance of our method with tracking

pproaches. Our tracking performance is compared with TLD [41],

SK [44], and DFT [45] as representative for state-of-the-art video

rackers. The ground truth information is provided for all six body

arts for the 1st, 250th, 500th, and 750th frames of each sequence.

Fig. 12 plots the spacial error for each of the trackers over time.

s quality metric, we calculate the Euclidean error from the ground

ruth segments center and average it over all body parts and all the
0, 450, 650, 750 and 950 from top left to down right. and in the upper

right leg, left leg, head and trunk, respectively.

segmentation with particle matching, Computer Vision and Image
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Fig. 14. Segmentation results for [17] (upper rows) and our improved moseg (lower rows) for frames (a) 1, 70, 90, 110 of cats02, (b) 1, 40, 50, 70 of cats04, and (c) 1, 100, 300, 380 of

ducks01. For the sake of visibility, the background trajectories are thinned out in cats04.
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10 sequences. All the trackers are initialized on the ground truth

points in the first frame and run over the remaining frames. As

it can be observed, all the trackers have an increasing error over

time however our moseg trackers have the best performances. The

tracker based on improved moseg reduced the error significantly,

which is due to equipping the basic segmentation with particle

matching.

A problem with many trackers is that they lose the object and

therefore either they do not report any measurement or they falsely

produce some results. For example TLD is one of the trackers that

loses the track of the body parts frequently. Table 1 shows the per-

centage of frames where there is no detection by the tracker. It is

clear that TLD has lost tracking quite often. Our basic moseg also lost

tracking for a short period, it happened just for one of the sequences

where during rolling to the sides one of the segments was completely

lost. This problem is solved in the improved moseg because the par-

ticles are rematched when the infant goes to the normal situation

(Fig. 11). The second case, where there is wrong detection, could even

lead to worse errors for the CP detection. This is less of a problem for

our proposed trackers because they are derived from a segmentation

and therefore always update their results from the right object even

though they might not report the right location.

For the sake of a qualitative visualization we plot the tracking

results of TLD and our method in Fig. 13. The upper row shows a

qualitative result of TLD. The tracker lost the left foot in frame 50.

A bit later, the same happens to the right foot and in frame 450 TLD
Table 2

Segmentation results on the test set of the Freiburg

Method Region density (%) Precis

Basic moseg 2.5 82.23

Improved moseg 2.5 86.69

[17] 2.5 76.75

Please cite this article as: H. Rahmati et al., Weakly supervised motion

Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.07.004
edetects it wrongly at the right hand. Similar problems regularly oc-

ur for the other body parts, hence the performance is insufficient for

ur task. The results of our proposed basic moseg tracker are shown

n the bottom row of Fig. 13. All body parts are tracked efficiently in

ll the frames, without drifting or part loss. Occlusions (frames 650–

50) were dealt with well.

.2. Performance on cerebral palsy detection

In [8], we used our proposed motion segmentation and tracking

pproach in a larger scale. In that study we extract the motion data

or 78 videos with the lengths of 3–5 min. It is worth mentioning

hat this is one of the largest data sets reported in the literature for

P detection. The extracted motion data are compared with data cap-

ured by electromagnetic sensors placed on the six different points

hat we aimed at. From both of the data sets a set of features are ex-

racted and fed to an SVM classifier. The 87% accuracy of our data

ersus 85% of the electromagnetic sensors indicates the practicality

f our method. Considering the facts that previous computer based

pproaches suffer either from being intrusive to the infant’s motion

attern by using extra instruments, or lack precise analytic expla-

ation for their results in one hand, and economically suitability of

ur approach in another hand, it is not far from expectation to say

hat our method has the potential of being widespread for clinical

se.
-Berkeley data set.

ion (%) Recall (%) F-measure (%)

± 5.24 67.45 ± 3.92 71.62 ± 3.49

± 6.94 70.85 ± 4.83 76.57 ± 4.43

60.38 65.05

segmentation with particle matching, Computer Vision and Image
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Fig. 15. Overview of the improved moseg results for sequences used in the paper. Rows show the results in frames 1, 250, 500 and 750 for the sequences 1−5 while only the first

frame is used as prior knowledge.
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.3. Comparison with a standard benchmarks

In this section we will study how our methods perform on a dif-

erent data type, two experiments are adopted. For the first exper-

ment, the three video sequences cats02, cats04 and ducks01 of the

reiburg-Berkeley training data set [17,42] are considered, in which

e deal with occlusion, disocclusion, camera motion, fast motion and

ow texture objects. The segmentation results of our proposed meth-

ds (initial labels in frame 50 in cats02 and cats04, and 1 and 200 for

asic moseg and 200 for improved moseg in ducks01) as well as those of

rox and Malik [17] are displayed in Fig. 14. As the results show, Brox

nd Malik [17] only distinguishes very different motions from each

ther. This is why no object is detected in Seq. cats04 and ducks01.

n the other hand, our segmentation method performs reliably: in

eq. cats02 except for very small parts of the legs in a short period

f the video, the cat is correctly segmented from the background.

eq. cats04 shows a case where one of the cats has very low tex-

ure as well as fast motions, however the segmentation results are

ostly correct. Finally, Seq. ducks01 shows multiple similar objects

hat move next to each other, the segmentation task has become

ven more challenging because of occlusion, disocclusion and exit

f one of the ducks. Despite all these, our method managed to seg-

ent all the objects correctly through the whole shot. It should be

oticed that in cats04 one of the cats has a low texture and almost
Please cite this article as: H. Rahmati et al., Weakly supervised motion
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o trajectory is initialized on it, this deteriorates the quality of our

ethods.

For the second experiment, we consider the whole test-set of the

reiburg-Berkeley data set [17,42] which contains 30 videos of differ-

nt moving objects. The goal of this study is first to make the re-

ults comparable with prior and future published numbers, and sec-

nd, is to study the sensitivity of the segmentation results to the

rame that is manually labeled and used as prior knowledge. For

ach of the videos, at most 10 frames, some of the videos have less

han 10 ground truth frames, from the ground truth frames that have

he largest number of objects are randomly selected. Each time one

f these frames is used to develop the prior knowledge while the

hole ground truth frames are used for evaluating the segmentation

esults. The standard deviations of the comparison measurements

how the sensitivity of our methods to selecting different frames

s prior knowledge. Precision, recall, and F-measure introduced in

42] are used to measure the performance of each of the segmen-

ation methods. The average over all 30 videos of these measure-

ent alongside the average standard deviation of our methods by

hanging the prior knowledge are shown in Table 2. As it can be

een both of our methods outperform the method of [17], and im-

roved moseg has the best performance. However, the performance of

ur methods on this data set is not as sufficiently good as the per-

ormance on the infants video data. The reason is mainly because
segmentation with particle matching, Computer Vision and Image
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Fig. 16. Overview of the improved moseg results for sequences used in the paper. Rows show the results in frames 1, 250, 500 and 750 for the sequences 6–10 while only the first

frame is used as prior knowledge.
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our segmentation methods depend on the prior knowledge that is

prepared for each objects. In this data set, complete occlusion, exit-

ing and entering new objects, and camera shaking reduce the qual-

ity of the flow fields and, consequently, reducing the quality of our

methods.

Although our methods perform reliably, they could suffer from

some points. First, the segmentation task depends on the distance

between trajectories, and since our distance measure (3) only allows

for the verification of translational model, we might have problems

with segmenting other models of motion. For example, the legs of

the cat in Seq. cats02 are wrongly segmented because we deal with

fast scaling. The second problem could arise from optical flow or tra-

jectory inaccuracy. Although we used one of the promising optical

flow methods, we could still have problem in situations with fast mo-

tion and low texture. This could be visualized in the last image of

Seq. cats04 where the low texture cat does a fast jump and trajecto-

ries are wrongly developed.

Success of our methods depends on prior knowledge about the

objects. Since providing prior knowledge is not possible or may be

expensive for applications where objects frequently enter and exit

the scene, our methods may not be favorable for a general segmenta-

tion purpose. Our methods are suited best for situations where pre-

cise segmentation is needed although at the expense of some prior

knowledge.
Please cite this article as: H. Rahmati et al., Weakly supervised motion

Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.07.004
. Conclusions

In this paper, we dealt with motion based object segmentation

nd tracking in a video. Due to insufficiency of motion in situations

here objects share similar motion pattern, need for additional infor-

ation seems inevitable. We proposed a framework to integrate this

dditional knowledge to the segmentation procedure. The knowledge

n our case was a set of assigned trajectories to the true segments, that

as prepared by manually labeling some of the frames. We reduced

he number of manually labeled frames by integrating a multi-scale

article matching technique to our method. Since the original mo-

ive of our work was to extract motion data for predicting cerebral

alsy, detailed analytical experiments were adopted on videos of in-

ants in order to see the functionality of our methods for this applica-

ion. In addition, a standard data set was considered to show the gen-

rality of the methods. Quantitative and qualitative results confirmed

hat the proposed methods boosted the segmentation performance a

reat deal. Furthermore, the tracker derived from our segmentation

ethods outperformed the state-of-the-art tracking methods.
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