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Abstract. We propose a new tracking-by-detection algorithm for multiple tar-
gets from multiple dynamic, unlocalized and unconstrained cameras. In the past
tracking has either been done with multiple static cameras, or single and stereo
dynamic cameras. We register several moving cameras using a given 3D model
from Structure from Motion (SfM), and initialize the tracking given the regis-
tration. The camera uncertainty estimate can be efficiently incorporated into a
flow-network formulation for tracking. As this is a novel task in the tracking do-
main, we evaluate our method on a new challenging dataset for tracking with
multiple moving cameras and show that our tracking method can effectively deal
with independently moving cameras and camera registration noise.

1 Introduction

Simultaneous object tracking across multiple views is commonly solved with strong
restrictive assumptions of known static cameras and planar movement constraints. It is
easy to see that both constraints generally do not hold for many tracking tasks, such
as simultaneous tracking using cameras on unmanned aerial vehicles, or tracking in
synchronized dynamic videos from hand-held cameras. The knowledge about camera
configurations will be unreliable or nonexistent. The movement on ground planes (GP)
is an important special case, but even in standard tracking scenarios, e.g. pedestrians
within cities, often too restrictive. We exploit connections between tracking and the
Structure from Motion (SfM) domain, which can help making generic tracking sce-
narios solvable. Knowledge about camera localization and 3D structure can help with
this task. Structure models built by today’s SfM methods generally show good quality,
are easy to create and widely available. Because of the ubiquity of available 3D mod-
els we propose to merge established methods for multi-view tracking-by-detection and
localization methods developed for SfM to enable more generic tracking tasks.

Our contribution is a method for tracking-by-detection for multiple dynamic cam-
eras, with known but noisy 6-DoF camera motion. We propose a novel method for
linking data across time and views incorporating the motion uncertainty of the cameras.

We are the first to present a generalization of the strongly constrained 2D multi-
view tracking scenario to unconstrained 3D scenarios. We do not make common re-
strictive assumptions, such as planar motion, known number of objects, constrained
camera configurations, background modeling and explicit introduction of knowledge
about the tracked objects movement characteristics in motion models.
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Fig. 1. Multi-view tracking from three dynamic cameras (colored in black, past: solid, future:
dashed) of two moving objects (red). Object A is tracked in two, and B in three cameras. Camera
locations are unknown and approximately determined by registration to SfM models.

We describe the tracking framework in § 2] In §[3| we explain unary and pairwise
cost terms for the flow-network framework. In §[4]an experimental analysis is given. In
§ 5] we conclude and discuss future work. We use view and camera to refer to image
data, orientation and position of one camera at a given time. We use frame to refer to
image data from all views at a given time. A dynamic camera means a moving camera.

Related Work: Multi-object tracking has been studied extensively. The most success-
ful methods define tracking as a global optimization over a complete sequence, with
given frame-wise object hypotheses. This is usually called tracking-by-detection.

Optimal single view data association for many detections per frame has been for-
mulated in [27/11]]. [26] tracks without explicit detections on probabilistic occupancy
grids. [2]] extends this with iterations of discrete associations and continuous refinement.

Data association across multiple views adds the challenge of associating over time
and views simultaneously. [15] solves one tracking graph for each view, multi-view
couplings are solved in an additional graph. [9] solves associations across time using
pre-computed merging candidates across views. [13]] uses a homographic constraint
to associate across views. [38l1] propose a probabilistic occupancy grid. Tracking is
solved over discretized grid positions. These methods rely on static cameras. [166]
propose multi-view tracking with dynamic cameras in a stereo setup.

Data is usually collected as independent detections from a given detector [27/20/2/1]]
[1702219123]] or by background subtraction [15011]. [3U8I2611424] work directly on a dis-
cretized grid or volume representing the space of all possible locations.

Several common constraints are used to facilitate tracking. Motion is often limited
to a known GP [31261281311712219/13124]. [16l6] assume planar motion, but infer the
GP automatically. [26] uses global appearance constraints. [22] uses social grouping
cues. [[1SU3U11U8]] need static background and cameras. Specific camera configurations
are needed: head-level cameras [8]], top-down views [9]], visible feet locations [13]].

Solutions for association networks are found by Linear Programming (LP) [15/11126]
[L12019], Dynamic Programming (DP) [3l8127]], Energy minimization in MRF/CRFs
[2122]. To reduce computational demands greedy approximations are available [23]].

Camera registration/localization has a variety of methods and distinct applications.
In SLAM [3], methods estimate precise 6-DoF poses to 3D models, given location pri-
ors and feature matches. [[19] solves robot self-localization given large-scale 3D models.
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[25010] propose methods for registering image collections for large scale models. [[14]]
achieves high-precision registration for Videos to SfM models.

Our work is related to [9], with important differences. We perform the data associ-
ation in 3D, while [9] uses a given GP. [9] has static entry/exit regions and hence the
number of views to be used is known a priori. We incorporate camera and detector un-
certainties into linking (T6) and reconstruction probabilities (12), while [9] only uses
these for error bounds while pruning reconstructions. [9]] needs a form of enumeration
for all possible sets of reconstructions, which grows factorially with number of cameras.
Our work uses LP to optimally select the top reconstructions without enumeration, with
a lower dependency on number of cameras, thus removing a serious bottlenecks of [9].

2 Tracking

We adopt a similar notation to [9]. We extract person detections using the Deformable
Part Model detector [7]. Each 2D detection in camera j at time ¢ is described by
xz(-j f = (x,s), with position = and scale s. All detections at time ¢ from all cam-
eras are denoted X (). One set of coupled detections from multiple cameras at time ¢ is
denoted as reconstruction R,(:) € R® C R. From each camera at most one detection

can be included in each Rg):

R c (XD xGD e RO j £ i vi=i"} . (1)

Ideally one reconstruction R,(:) corresponds to one real world object which caused the
detections in each view. We denote the number of detections in one reconstruction as its
cardinality. The set R(") denotes all reconstructions at time ¢. A trajectory hypothesis
is defined as 7, = {R,(fl) e ,R,(fj") }. This formulation allows missing detections for
a real world object track in several views at different times. These missing detections
can be due to detector errors or occlusions in a subset of views.

Similar in spirit to [9/27]] we formulate multi-target tracking as a MAP problem and
attempt to find an optimal set of tracks 7 which can be written as

T* =argmax P(T|R) = argmax P(R|T)P(T) )
T T
= arg max HP(RJT) H P(Tx) . 3)
T i TheT

This assumes conditional independence of likelihoods given 7 and independent object
motion in (3)). We further assume non-overlap of tracks, i.e. 7, () 7; = 0,Vk # j. The
terms in (3)) are defined as follows:

P(T) = Pen(RY) Pu(REDIRE) .. Pop(RETM) (4)

PRIT) = {Pm, ifIT e T Ri€Th )

1 — P,.., otherwise
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Fig. 2. Detection x %) from camera C' ](-t) is transformed into 3D with center Mz(_],t) and uncer-

. ¢ -/ ’
tainty 3/ ) We propagate both into view ;' at time ' and compute D3 (Zpro;, xl(.,j ) (M) as

the Mahalanobis distance in the image (colored in red).

This problem can be turned into a cost-flow network and solved exactly in an LP as
in [9U1L26411415], or using DP [27U83]], or approximately and fast as in [23]]. We use an
LP, similar to [9]]. In order to solve the LP we have to compute a set of reconstruction
hypothesis per frame R® and provide probabilities P,,,, P.,, P,¢. for all reconstruc-
tions, and Pj; for all pairs of reconstructions. We turn the probabilities into costs W,,,
Wezr Wiee and Wy, for the flow-network as in [27] (eq. 11), or [9] (eq. 13-16).

3 Modeling of Probabilities

The flow-network method links reconstructions across views and time given unary and
binary costs. Similar to [27)9] we model these costs as probabilities P,... and P;.

3.1 Extraction of Reconstruction Candidates

To start the tracking we need a set R(*) of object hypotheses for all times ¢ containing
the true solution. Because of this we focus on extracting the sets R(*) large enough to
ensure maximum recall. However, the combinatorial explosion prohibits inclusion of all
feasible reconstructions in R(*). We extract a set of L top-ranking reconstructions for
a each cardinality m as follows: We apply a distance function D1 (xz(»] ’t), XE,J /’t)) in 3D
world coordinates between all pairs of two detections originating from different views,
which we define in (9). Using this distance function we define the compactness of a re-
construction Rg) as the sum of all pairwise detection distances ZWC, RV atar Dy (x,x").
This allows solving for the best (i.e. most compact) reconstruction of a given cardinal-
ity m at time ¢ as an LP. We extract the L top ranking solution using CPLEX for each
cardinality and insert all extracted reconstructions at time ¢ into R*).

3.2 Localization of Detections and Reconstructions

Most previous multi-view multi-target tracking methods rely on the assumption of a
given or automatically inferred ground plane (GP). However, GPs may not exist in some
scenes, may not be visible (i.e. occluded in head-level cameras), or non-planar tracking
is required. Localization of 2D object detections in 3D from head-level cameras using
a GP assumption will be unreliable, even if a perfect GP is available, due to the small
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Fig. 3. A reconstruction R consisting of 3 detections (red, blue, green), seen from 3 cameras at
time ¢ is localized in 3D. Detection uncertainties in 2D become depth uncertainties in 3D, which
increase with distance to the camera. Eq. (8) gives center and uncertainty of R (black, dashed).

viewing angle. We side-step these problems by using the height of a detection as depth
cue. Even if a bounding box is partly occluded, given the width and expected aspect
ratio of a walking person, approximation of the height is possible. We use a distribution
of heights with large uncertainty: mean A = 1.74 m and standard deviation o = \/4.

We assume a calibrated camera j at time ¢ is given with approximately known pose

C;t) = (R,tr), where tr and R denote the position and orientation given from some

arbitrary noisy image-based registration method, and known internal calibration matrix
(4,t) _

K;. Let X o® be the positional covariance of the camera. Given a detection x;
g

(z,s) with center x and scale s in view j at time ¢ we compute a 3D location and

uncertainty in world coordinates for the detection. On undistorted images, the detection

direction £ is given by & = K~ 1%, where 7 is homogeneous z and ||Z|| = 1.

We compute the detection distance from the camera center as d = X - f; /s, where s
is the pixel height of the detection in the image, and f; the camera’s focal length. This is
a reasonable distance approximation if the object is close to the optical axis. Knowing
d, we model the 3D location in world coordinates as a normal distribution with mean
M ;.. and covariance Egj’t):

M, 6.0 = RT . [(&-d) —tr] , (6)

=00 = RT diag (\/2, \/2, A-f;/(4s)) R+ S0 . 7
J

The covariance is composed of two terms: Orthogonal to the optical axis, the detection
3D uncertainty is only dependent on the object scale A. The detection height uncertainty
in 2D becomes detection depth uncertainty in 3D as shown in figures 2]and [3] The sec-
ond term is the isotropic camera localization uncertainty X ot A normal distribution

over height in 2D will generally not translate into a normal distribution over depth in
3D. However, modeling (and thereby approximating) the true depth uncertainty as a
normal distribution in 3D allows us to easily propagate the resulting uncertainty back
into other 2D views and obtain a normal distributions again. See Fig.[2]and (I0) for an
explanation of the back-propagation.
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To model the 3D reconstruction Rg) consisting of many detections, we fit a nor-

mally distributed uncertainty with mean M RO and covariance X RO such that:
k k

1
z~ N(Mpo, B po0) ~ > NM,,X,) . (8)
IER](;)
Fig.[3]shows an example of 3 detections combined into one reconstruction. We use

only one normal distribution for R, and not the mixture of all distribution from included
detections to allow quick propagation of a single normal distribution to different views.

3.3 Detection and Reconstruction Distances

In order to model P,.. and P;, or the reconstruction unary and pairwise costs, respec-
tively, we need a set of geometric and appearance-based comparison measures between
detections from different views and reconstructions. Given the localization and uncer-
tainties of detections and reconstructions in 3D we will define four geometric and one
appearance-based distance measure to be used for P,... and Pj;, in §. and

— Dy: Mahalanobis distance between detections in 3D:

Dl(xvy) :Dmah(MgﬁMzazm) +Dmah(Mx§My72y) . 9
— Ds: Similar to D¢, Mahalanobis distance between two reconstructions REP,RS,')
using mean MR(@ ,MR“/) and covariance ER(” ’ERM .
k k! k K’

— Ds3: Defined between a 2D detection xgj ’t), which has been projected into 3D
as MI(_J»,U with uncertainty Egj’t), and a 2D detection xl(f ), (See Fig. . We

project M.+ into view j' at time ¢ with camera Cj(,t ) = (R, tr) and produce
1 )

Tproj = Kj[R tr]-M (... To propagate the uncertainty, the 3D covariance X
is projected into view j' at time ¢’ using the projection’s Jacobian matrix J () of

C'](-,t,). We also include C’](f,)’s localization uncertainty to handle camera errors:
Zprog. = I @) (BP0 42 ) - T (@) (10)

Using projected mean x,,; and covariance X,,.,;, we define D3 as the Maha-
lanobis distance

DS (xproj ) ngjl’t/)) = Dmah (XZ(‘Ij/yt/); xp’r‘oja 2proj;,;) . (1 1)

— D, Defined between a reconstruction and a 2D detection equivalently to D3 using
the reconstruction’s mean and covariance for reprojection.

— Ds5: Between two 2D detections we define D5 as the Earth mover’s distance over
RGB color histograms. We experimented with adding a HoG-based distance mea-
sure, but found it not to be helpful, due to large baselines between different views.
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3.4 Entry and Exit Probability

Another often exploited advantage of static cameras is the possibility of defining ex-
plicit entry and exit zones in the images. Only in those areas are tracks allowed to start
and end. This is easily modeled by setting P,,, and P,, to zero for all detections occur-
ring outside these zones. For dynamic cameras this option does not exist. We estimate
P.,, = P., for all reconstructions uniformly as the average missdetection probability
of the detector over all sequences and cameras. These probabilities are transformed into
costs for the flow-network as W,, = W, = —log(Pey) = — log(Per).

3.5 Reconstruction Probability

The probability P,.. measures the pairwise similarity in appearance and spatial prox-
imity of all detections in a reconstruction. For a reconstruction with detections of the
same object, all detections should be similar in appearance and spatially close together.
We set

Prec = P(drep) : P(dcol) . (12)

P(dyep) is computed as the probability that each detection reprojects well to all detec-
tions in other views. We average the distance D3 for all pairs of included detections:

1
Arep = W Z Ds(x;,x;) - (13)
| k ‘ {IZ,;,:EJ'ERE:)

Average bounding box color dissimilarities are computed:

1
dcol = (t) 5 E D5(£l;£]) . (14)
‘Rk‘ | I'I'E'R(t)
CRhadV) k

The distributions of dy.p, dco are trained from ground truth and turned into matching
probabilities P(d,.p), P(dcor). We transform the probability P, into the node’s flow
cost W,... and add the detector confidence for every detection:

- 1—Prec B(x;)
T, €ER,,

rec

where [3(z;) describes the detection’s false positive probability based on the detector
score. Note that this cost neither penalizes nor prefers reconstructions with large or
small cardinality. Unlike [9] we cannot assume to know the number of cameras in which
an object is visible, and prefer to keep this score invariant to the cardinality.

3.6 Linking Probability
For two given reconstruction candidates R(t), R,(Ct,ﬂ) the transition probability Pj; in-

dicates the probability of R,(:,H) following R,(:) in a track. We set

Pli - P(dpro) . P(dcol) . P(dcen) . (16)
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Fig. 4. Tracking result in 4 dynamic cameras of seq. 3. Static cameras 1+2 show current (red) and
past (blue) estimated camera positions. Anonymized for publication purposes.

To establish these probabilities we will compute projection distances dy.,, pairwise
color dissimilarities d..,;, and the distance between the reprojections’ center points dc, .

Let m, n be the cardinalities of Rg), R,(:,H), respectively. We calculate how close the

reconstruction ’R,(f) ’s 3D center projects to all detections x; € Rgﬂ) and vice versa:

m

1 — 1
dyro = 2; Di(Mpg,25) + — > Da(Mpaen, i) - (17)
J:

=1

dco1 1s computed as the average color dissimilarity between all detection pairs x; €
R(t), T € R;f,"’l), similar to @ We compute the distance between reconstructions
centers deep, = Do(M RS)’M R,(:,“))‘ This implicitly assumes maximum probability
for stationary objects, which is generally not correct. However, this is an acceptable
approximation because the frame-to-frame motion (1.5 meters/sec avg. walking speed)
is 1-2 magnitudes smaller than the camera localization error. The distributions of d .,
deor and deq, are trained from ground truth and turned into matching probabilities for
(T6). The probability is transformed into a cost as W;; = —log(Py;).

4 Experiments

Dataset for Evaluation: We used three sets of videos for tracking, each set is called
a sequence. Each sequence consists of 301 frames, seen from 7 synchronized cameras.
Two of the 7 cameras are static, show the scene from a top-down view, are manually
registered to the SfM model, and only used to create ground truth 3D locations for
pedestrians and the 5 videographers. The remaining 5 cameras are dynamic, always
seen from the static cameras, and used for tracking. In Fig. ] and 3] 4 out of 5 dynamic
and 2 static cameras are shown. Due to space constraints the Sth camera was omitted.
Pedestrian tracks are annotated in all 7 views and identities across views are given. A
manually determined GP is calculated for visualization and evaluation, but is not used
in the algorithm. We manually collect 3D locations on this GP for all person tracks,
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MOTA(%) MOTP io(%) MOTP 3d(m) MT[%] ML[%] PT[%] ids Frag C.Errl (m) C.Err2 (m)

S.1{1.01 0.88/093 2.65/136 7.14 2857 6429 21 91 0.73/0.652.16/1.79
S.2/0.64 091/095 125/096 9.09 5455 3636 3 104 0.78/0.67 3.55/1.71
S.3]1.44 0.89/094 132/088 0 54.55 4545 4 119 0.62/0.48 2.82/1.21

Table 1. Tracking and video registration result for three sequences. Explanation in § ]

including the videographers. The scene is not perfectly planar as can be seen in Fig. 4]
and[3] Nevertheless, we expect the 3D localization error for all tracks to be below 30 cm.

Video Registration: For each sequence, we independently register all 5 dynamic
videos to the SfM model using [21]. The SfM model covering the scene was manually
created using high-resolution DSLR images. Because we have ground truth 3D position
on a GP for each videographer track, we can evaluate the localization of each camera.
The camera registration results in a mean and median error of 0.71 and 0.62 meters,
respectively. Column C.Err] in table|l|show this positional error for all sequences sep-
arately. Column C.Err2 shows the mean and median error between GT camera location
and the estimated position of the corresponding videographer.

Tracking: We use an independently trained Deformable Part model detector [7]]
for person detection. Given registered videos we start the tracking by computing 3D
positions and uncertainties for all detections, in all views and frames. We only have
tracking annotation for persons which are seen from the two static cameras in at least
one frame. We cannot evaluate the tracking for persons outside of this area. Therefore,
we manually eliminate all detections, based on their 3D projection, which cannot be
seen from the static cameras. This avoids creating tracks outside of the valid track-
ing region, which would result in a misleading FP number. Following § we extract
reconstruction candidates for all frames. We set L = 100 as sufficiently large set of
hypotheses. We create the flow graph exactly as in [9], using our defined probabilities,
and solve it using CPLEX. As evaluation criterion we use the metric presented in [18]:
Identity switches (ids), Number of interruptions of a ground truth track (Frag), Mostly
tracked (MT), Mostly lost (ML), Partly tracked (PT). Additionally, we use the CLEAR
metric [4]12]: Multiple Object Tracking Accuracy (MOTA) and Multiple Object Track-
ing Precision (MOTP). The hit/miss decision is computed in image space. A hit has an
intersection over union score of over 0.4. We compute MOTP in image space as inter-
section over union (MOTP io, in percent, mean/median) and as the distance between
estimated and true 3D track location (MOTP 3D, in meters, mean/median).

Discussion: We achieve consistently good precision in image space (MOTP io). In
addition, we achieve good precision in 3D localization (MOTP 3d) considering that de-
tection height was used as initial depth estimate and no GP was available. Additionally,
we only have low confusion, as indicated by low identity switches (ids). The low ids
score is partly explained by frequent interruptions of the ground truth track, resulting
in high fragmentation (frag). Tracks break, rather than incorrectly switching targets.
Often detections are incorrectly left out from a track, resulting in many false negatives
and a low MOTA. This is due to the fact that the scene setup does not allow to specify a
known cardinality for an object detection. Furthermore, several difficult tracks (severely
occluded persons, far away persons) are missed altogether, resulting in a low MT, and
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Fig. 5. Tracking result in 4 dynamic cameras of seq. 1. Static cameras 1+2 show current (red) and
past (blue) estimated camera positions. Anonymized for publication purposes.

high ML. Fig.]and[5]show the tracking result from 4 of 5 dynamic cameras in two se-
quences. Identical colors and numbers in different views indicates the same track. The
two static cameras show current estimated camera positions (red) and past videographer
position (blue) on the GP. Typical failure cases include track 143 and 153 in Fig.[4} The
object is correctly tracked but the tracks are not merged over views. Track 114 and 131
in Fig. [5] show a confusions between tracked objects within each track. In Fig. [5| some
far-away persons are missed, due to unreliable detections.

5 Conclusion

With this work we contribute to the solution of multi-target tracking in multiple mov-
ing, approximately localized cameras. We extend an established tracking-by-detection
framework using flow-networks, and show that even without many common constraints,
such as availability of GP, static cameras or background subtraction, a satisfying track-
ing solution can be found nevertheless. This work presents the first generalization of
multi-view multi-target tracking of objects on a GP to moving objects and cameras in
3D. Our tracking method is not limited to person detections. All objects with approxi-
mately constant size can be tracked given an appropriate detector. We consider several
directions for future work. The MOTA scores we obtain are significantly lower than
scores usually obtained on established datasets with static and known cameras, such as
PETS2009. Primarily, this is due to the additional unknown and varying camera loca-
tions and the lack of available track entry and exit regions. We aim to improve this by
using the 3D model visibility information to infer likely entry and exit regions. Another
reason is the strong influence of incorrect and noisy camera poses. We aim to improve
this by including pairwise essential matrix constraints and estimation of the relative
poses directly within the tracking framework. We also explore possibilities of creating
reconstruction candidates build from short 2D object tracklets, instead of single-frame
detections to reduce computational demands.

Acknowledgments: This work was supported by the European Research Council
(ERC) under the project VarCity (#273940).
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