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Abstract. Motions of organs or extremities are important features for clinical
diagnosis. However, tracking and segmentation of complex, quickly changing
motion patterns is challenging, certainly in the presence of occlusions. Neither
state-of-the-art tracking nor motion segmentation approaches are able to deal with
such cases. Thus far, motion capture systems or the like were needed which are
complicated to handle and which impact on the movements. We propose a solu-
tion based on a single video camera, that is not only far less intrusive, but also
a lot cheaper. The limitation of tracking and motion segmentation are overcome
by a new approach to integrate prior knowledge in the form of weak labeling into
motion segmentation. Using the example of Cerebral Palsy detection, we seg-
ment motion patterns of infants into the different body parts by analyzing body
movements. Our experimental results show that our approach outperforms cur-
rent motion segmentation and tracking approaches.

1 Introduction

We aim at segmenting motion data from monocular videos into underlying body parts.
Motion is an important cue for the clinical diagnosis of, for instance, cardiovascular
diseases [17], Cerebral Palsy [1], or for gait analysis [9]. In this paper, we focus on
the motion of infants to detect Cerebral Palsy (CP) which is a set of chronic conditions
affecting body movements, posture and muscle coordination. It is caused by damage to
one or more specific areas of the brain, usually occurring during foetal development or
infancy. The absence of normal movement between 2 to 4 months post-term age has
been shown to be a strong predictor of later Cerebral Palsy [1].

Accurate diagnosis can be achieved by analyzing the infant’s bodily motion at the
necessary level of detail. Recently, a number of computer-based methods have aimed to
quantitatively analyze general movements in order to detect CP. However, they either
use extra instruments [13] that are intrusive to the diagnosis task, or they don not provide
analytic results [20]. The reciprocal relation between body parts is a strong analytic cue
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for CP detection. E.g., [8] proposed that a high correlation between two limbs might
indicate a lack of normal behaviour. Therefore, in order to perform an analytic tool to
study the disease we propose a new segmentation method to separate and track different
body parts without need for any extra instrument.

The video analysis of infant motion is very challenging. Infants will often cross
their limbs, twist arms, move abruptly, etc. As a result during such motions, state-of-
the-art trackers, e.g. TLD [7], drift and fail at tracking the body parts at the required
level of precision. Similarly, body pose trackers have difficulties due to the high motion
variability. Motion segmentation, on the other hand, has no drifting problems if the body
parts move distinctly – motion even simplifies the segmentation. However, an initial
bounding box or an initial segmentation prior cannot be integrated conveniently and,
without it, the segmentation performance is poor. Our key contribution is a new energy-
minimization-based formulation of motion segmentation that allows for the integration
of prior information. The result is a system that can segment long sequences reliably.

Related Work Motion segmentation is the task of grouping point trajectories from an
image sequence subject to coherence of their motion over time. While earlier work fo-
cused on assigning the trajectories to subspaces, e.g. with the generalized PCA [23],
subsequent work exploited sparsity [6,12] or non-negative matrix factorization [4]. Fur-
ther works exploit temporal smoothness [19] or depth ordering [11]. In most recent
works, the pairwise [6,4,3,5,12,19] or higher-order [15] relationships between trajec-
tories are aggregated and a final spectral clustering [14] step of an affinity matrix A
encoding trajectory similarity finds the association of trajectories to motion segments.

In contrast to image segmentation approaches, those for motion segmentation are
unsupervised, i.e. it is neither necessary nor possible to specify prior knowledge about
the assignment of trajectories to motion segments. Modifying A to prevent trajecto-
ries with the same prior label to be clustered into different segments has undesired bi-
ases which leads to poor results: Since spectral clustering minimizes the inter-segment
cut through A, weighted by the sum of intra-segment weights [14], tweaking local
weights creates a global bias which results in non-intuitive results. In terms of weakly
supervised clustering, also called transductive learning, [24] derived a simple iterative
framework in which the final k-Means-step in spectral clustering is replaced by an it-
erative procedure. It alternates between computing a mapping F from graph Laplacian
to class association and regularizing F regarding the initial labels. While they proved
that the mapping converges to a reasonable solution respecting the initial labels, our
energy-based approach allows specifying additional unary terms for trajectories which
are similar to initially-labeled ones. In our work, we overcome the no-prior limitation by
formulating the motion clustering task as a multi-label MRF, similar to graph-cut-based
image segmentation [2]. We use the generalized Potts model, thus encouraging large
motion differences between segments and similar motions within segments. This may
seem straightforward, but to the best of our knowledge such a scheme has not been pro-
posed before. MRFs have been used for dense image segmentation, but only based on
short-term motion obtained from optical flow, e.g. [21]. In contrast, we segment sparse
motion information from trajectories which last over many frames.
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The rest of the paper is organized as follows. In Sec. 2, we derive our energy for-
mulation, in Sec. 3, tracking by segmentation is explained, in Sec. 4, we present exper-
imental results, and Sec. 5 concludes the paper.

2 Integrating Prior Knowledge into Motion Segmentation

Energy Formulation This section describes the energy minimization framework used
to segment trajectories into the infant’s body parts. Let s be a trajectory from the set of
all trajectories S, and L be the unknown label vector assigning each trajectory s to a
segment Ls. The motion segmentation is obtained through a multi-label graph-cut [10]
that minimizes the energy E(L) associated to a segmentation L.

Similar to its use in an already extensive image segmentation literature [2],

E(L) =
∑
s∈S

D(s, Ls) +
∑

(s,r)∈N×N

V (s, r, Ls, Lr). (1)

The data term D is a penalty function that encourages high intra-segment motion sim-
ilarity and V is an interaction potential that enforces low inter-segment similarity for
trajectories in a local neighborhood N which is defined as follows,

N = {(s, r) | (s, r) ∈ S × S ∧ dsp(s, r) ≤ 10 ∧ (s, r) have temporal overlap}, (2)

where dsp(s, r) is the average spatial Euclidean distance over the common frames. Due
to occlusions and fast motions, trajectories are asynchronous and span different tempo-
ral windows. Considering just trajectories that last for the whole shot lower the number
of tracked points, leaving us possibly even with an empty set. So, we obtain the energy
for all trajectories that have at least one frame in common. Due to transitivity, it can be
expected that even trajectories that share no frames can be paired [3].

Data Term Let SI ⊂ S be the set of those trajectories s that are initially labeled with
Is. Then the data term in eq. (1) is defined as

D(s, Ls) =

0 if s ∈ SI ∧ Ls = Is
Ks if s ∈ SI ∧ Ls 6= Is
g(s, Ls) if s /∈ SI

(3)

where Ks = 1+
∑

(r,s)∈N×N V (s, r, Ls, Lr) is a large value that enforces trajectories
which are initially labeled to preserve their labels during the optimization process. The
first two cases in eq. (3) enforce the prior knowledge, while g(s, Ls) extends prior
knowledge towards initially unlabeled trajectories: g(s, Ls) is a measure of dissimilarity
between trajectory s and subset OLs – the set of trajectories that are initially assigned
label Ls. We define the energy g as negative log-likelihood of the average trajectory
similarity w ∈ [0, 1] which will be given in eq. (8):

g(s, Ls) = − log
(
mean
r∈OLs

((w(s, r))γ)
)
. (4)

Thus, the average similarity between a trajectory s and the set of initially-labeled tra-
jectories OLs is computed using the arithmetic mean, similar to a mixture distribution.
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Pairwise Term We define the pairwise Energy term in eq. (1) as:

V
(
s, r, Ls, Lr

)
=
(
1− δ(Ls, Lr)

)
f
(
w(s, r)

)
, f

(
w
)
= − log(1− wφ), (5)

where δ is the Kronecker delta function which leads to penalizing neighboring trajec-
tories s and r from different segments by a penalty f that depends on the trajectory
similarity w(s, r). The more similar s and r are the higher the penalty of assigning
them to different segments will be. f is defined as the negative log-likelihood of w
which is weighted by φ analog to w in eq. (4). γ and φ non-linearly balances D and V
in eq. (1). They are empirically set to γ = 0.1 and φ = 0.001.

Trajectory Similarity The trajectory similarity w(s, r) is a probabilistic measure if
the two trajectories s and r belong to the same moving object. Since such trajectories
usually move similarly and tend to be spatially closer than trajectories with different
associations, our definition contains a motion and a distance term:

d2t (s, r) =
dsp(s, r)

δc(s, r)
· d2mot(t, s, r), d2mot(t, s, r) =

‖vst − vrt‖2

5σ2
t (s, r)

, (6)

where dsp(s, r) is the average spatial Euclidean distance over the common frames, dmot
is the normalized motion distance at time t, and dt is the combined distance.

Unlike [3], we scale the spatial distance by the factor δc(s, r) = log(1 + nc(s, r))
where nc(s, r) is the number of frames that the trajectories s and r have in common.
This takes into account that the more frames two trajectory have in common the more
reliable the similarity result is. The reasons are twofold: First, the short length of a
trajectory indicates severe change in the neighbourhood of that trajectory (trajectories
terminate in case of occlusion or fast changes, and the short length shows two of such
cases happens in a short period). Thus, the optical flow is likely to be inaccurate in such
a situation and that trajectory might be wrongly developed. Second, since similarity
is obtained over common frames, two trajectories that show similar motion in their
common frames while they have completely different motions in other frames, still
get a high similarity. Therefore, it is reasonable to account less value for similarities
obtained over a smaller number of frames. In the definition of dmot, vst is the aggregated
motion of a trajectory s over 5 frames (vst = xst+5−xst ). σt is an adaptive normalization
which enables dealing with both fast and slow motions. In particular, local variations
among velocities within a segment should be tolerated more if motions in the segment
are changing more rapidly. Therefore, σt is defined, as presented in [3]:

σt(s, r) = min
a∈{s,r}

4∑
t′=0

σ(xat+t′ , t+ t′), (7)

where σ(x, t) is the local variation in the flow field at position x and frame t.
As long as two objects move next to each other, they share similar motions, and it

is impossible to separate them as different objects. But as soon as they start to move
differently, they can be distinguished. In order to exploit this information, the distance
d between two trajectories considers the instance when they start behaving differently.
So, d(s, r) = maxt dt(s, r). Finally, the edge weight between trajectories is defined as

w(s, r) = exp(−d2(s, r)), 0 ≤ w(s, r) ≤ 1. (8)
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Fig. 1. Sequences 1 (left) to 10 from the experiments (upper row) and segmentation results of our
proposed method (lower row) in frame 250.

3 Tracking Based on Segmentation

Along side segmentation, tracking is another important issue. Although there are many
tracking algorithms already providing astonishing results on the type of sequences for
which they have been designed, we experimentally found none of them to perform
sufficiently well on Cerebral Palsy problem. The reasons are manifold: fast motions,
high nonrigidity, frequent changes in appearance, etc. For example TLD as proposed
in [7], despite being fast and reliable tracking for many applications, fails to track the
limbs (upper row of Fig. 9). Therefore, we propose a motion segmentation based tracker.
It tracks a specific point x using the motion from segment Oi. We could initialize
x manually, or from the center of mass at a labeled frame of all trajectories in Oi.
Tracking x using the motion of the center of mass ofOi would fail due to discontinuity
from partial occlusions. Instead, an iterative procedure is used to update the tracking
results, as follows. For each segment Oi and each time step t, we define the subset of
all trajectories s ∈ Oi that are visible at t and t + 1 as St. Let xst and xst+1 denote the
respective locations of s. Then, x is updated iteratively using the average motion of the
trajectories:

xt+1 = xt +
1

|St|
∑
s∈St

(xst+1 − xst ). (9)

Since eq. (9) builds the update step by exploiting a large number of trajectories, it can
filter out noise and unreliable trajectories, as long as their effects remain small compared
to that of the majority of correctly labeled trajectories.

4 Experimental Results and Discussion

In this section the performance of our proposed method is analyzed on two different
data sets. First, several videos from infants that have been taken to study Cerebral Palsy
are used to analyze the motion of body parts. The second part investigates the generality
of the proposed motion segmentation algorithm by applying it on standard data sets.

4.1 Performance on Videos of Infants

In all experiments in this section, we used the experimental set-up that was used in (St.
Olavs Hospital, Trondheim, Norway). During the experiments, we analyzed the first
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Fig. 2. Average length (in number of frames)
of the trajectories in number of frames for dif-
ferent sequences.
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Fig. 3. Percentage (%) of trajectories used as
prior knowledge with respect to the total tra-
jectories number for different sequences.

Fig. 4. Seq. 1 ground-truth segmentation for
frames 1, 50, 200, 300 from left to right.

Fig. 5. Seq. 1 segmentation results of [3] for
frames 1, 50, 200, 300 from left to right.

1000 frames of 10 sequences showing different infants carrying out different motions
(Fig. 1). It is worth mentioning that these sequences are a magnitude longer than the
Hopkins 155 [22] and the Freiburg-Berkeley [16] dataset with an average length of 30
and 245 frames, respectively. As ground truth, we manually annotated a dense segmen-
tation of every 250th frame as displayed in Fig. 4. Trajectories are obtained as proposed
in [3]. Fig. 2 shows the average length of the trajectories for 10 sequences used in this
study. As it can be seen, due to occlusions, fast and complicated motion patterns, the
trajectories last just for 96.5 frames in average.

Segmentation Fast and complicated motions render the segmentation and tracking
difficult. To illustrate this, consider Fig. 5, that shows the results obtained with the
unsupervised segmentation of Brox and Malik [3]. They follow a similar procedure for
obtaining trajectories, but with unsupervised spectral clustering on an affinity matrix in
order to group trajectories. Compared to the ground truth (Fig. 4), it can be seen that the
overall segmentation is not reliable and only very distinct motions could be separated.

Their approach can hardly be blamed for such failure. Babies exhibit rather er-
ratic limb motions, such that points on the same limb nevertheless move quite differ-
ently. Motion per se, i.e. without further prior knowledge, is hardly strong enough a
cue to support a correct segmentation. To supply the segmentation algorithm with such
prior information, we label some trajectories for each segment in frames 1 and 500,
frames 250 and 750 are used for the evaluation. As it can be observed from Fig. 3, on
average only 5% of the trajectories are initially labeled. Compared to the full annotation
needed in current practice, this effort is negligible. As it is visible in Fig. 6 our approach
infers the remaining 95% of the labels. A qualitative comparison between our segmen-
tation result and the ground truth segmentation (Fig. 4) indicates a high precision.
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Fig. 6. Seq. 1 segmentation results for frames 1, 50, 200, 300, 650, 700, 800 and 950 from left
to right. The upper row shows the results for the baseline where no segmentation method is
applied, and the lower row is the results for the proposed method. Frames 800 and 950 have been
anonymized after the segmentation.

Fig. 7 shows a quantitative evaluation where we calculate the ratio of correctly la-
beled trajectories for three cases: in the first one we manually labeled just the first
frame, in the second case two frames (1 and 500). In addition, the result when using
the prior labels without transduction are provided as baseline. As it can be observed,
there is a substantial gain, which is necessary for our application. With the additional
prior knowledge, for most of the sequences the segmentation is very precise, except
for Seq. 5 where we deal with very complicated motions, complete occlusions and the
body rolling onto the sides. Since we focus on high precision, for the following tracking
experiment we used two labeled frames.

Occlusion is a longstanding problem in motion segmentation. Frames 650–800 in
Fig. 6 show a case of severe occlusion where the head is occluded by both hands. As
it can be seen, the segmentation remains correct and in frame 950, new trajectories
in the occluded area on the head are labeled correctly. Partial occlusion is less of a
problem for our proposed method: there are some trajectories left that can still stand in
for the terminated ones. These are joined by novel trajectories upon the reappearance of
the previously occluded region. In case of a complete occlusion, trajectories could be
linked to each other again by providing further manual labeling or by high dissimilarity
to all other motion segments.

Tracking Although we are tracking body parts and therefore a comparison to pose esti-
mation methods seems reasonable, we compare our tracker performance with a tracking
algorithm because pose estimation methods have skeleton constraints as additional prior
while our method has the same input as a tracker. In order to study the performance of
our tracking method, it is compared with the performance of TLD [7] as a representative
state-of-the-art tracker. It tracks an object in a 3-step procedure, of tracking, learning,
and detection. The tracker follows the object frame by frame, the detector localizes all
appearances that have been observed so far, and finally, their P-N learning method is
applied to estimate the detector error and update it for future use.

Since TLD is a single object tracker, we run it for each body part separately. In some
frames TLD falsely does not report a location. To penalize this, we assign these frames
the highest error of this sequence. In Fig. 8, the sequence-averaged tracking error of the
different body parts is plotted. We evaluate the tracking errors in terms of the Euclidean
distance to the ground truth points that are determined manually. As can be observed,
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Fig. 7. The GT intersection over union for
different sequences. Given are the results
for the segmentation of trajectories with one
manually labeled frame in green, two man-
ually labeled frames in blue and for the
baseline in red.
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(straight) and our motion-segmentation ap-
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Fig. 9. Seq. 1 tracking results of TLD (upper row) and of proposed method (lower row) for frames
1, 50, 250, 350, 450, 650, 750 and 950 from left to right.

our approach is considerably more precise for this task. The main problem with TLD is
that it cannot find the object for many frames. The average number of frames without
tracking results over all sequences and all body parts for TLD is 12.46%, while it is
0.38% for our proposed method which only once looses a body part: in Seq. 5, where
the baby rolls onto its right side and the right foot is completely occluded.

The upper row of Fig. 9 shows a qualitative result of TLD. The tracker lost the
left foot in frame 50. A bit later, the same happens to the right foot and in frame 450
TLD redetects it wrongly at the right hand. Similar problems regularly occur for the
other body parts, hence the performance is insufficient for our task. The results of our
proposed tracker are shown in the bottom row of Fig. 9. All body parts are tracked
effectively in all the frames, without drifting or part loss. Occlusions (frames 650–750)
were dealt with well.

4.2 Comparison with Standard Benchmarks

In this section we challenge our segmentation method with different subjects in or-
der to investigate its generality. To do so, the three video sequences cats02, cats04
and ducks01 of the Freiburg-Berkeley data set [3,16] are considered, in which we deal
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a)

b)

c)

Fig. 10. Segmentation results for [3] (upper rows) and our proposed method (lower rows) for
frames (a) 1, 70, 90, 110 of cats02, (b) 1, 40, 50, 70 of cats04, and (c) 1, 100, 300, 380 of
ducks01. For the sake of visibility, the background trajectories are thinned out in cats04.

with occlusion, disocclusion, camera motion, fast motion and low texture objects. The
segmentation results of our proposed method (initial labels in frame 50 in cats02 and
cats04, and 1 and 200 in ducks01) as well as those of Brox and Malik [3] are displayed
in Fig. 10. As the results show, [3] only distinguishes very different motions from each
other. This is why no object is detected in Seq. cats04 and ducks01. On the other hand,
our segmentation method performs reliably: in Seq. cats02 except very small parts of
the legs in a short period of the video, the cat is correctly segmented from the back-
ground. Seq. cats04 shows a case where one of the cats has very low texture as well as
fast motions, however the segmentation results are mostly correct. Finally, Seq. ducks01
shows multiple similar objects that move next to each other, the segmentation task has
become even more challenging because of occlusion, disocclusion and exit of one of
the ducks. Despite all these, our method managed to segment all the objects correctly
through the whole shot.

Fig. 11 shows a quantitative comparison between the performance of our proposed
method and results of the baseline from the initial labels, where no segmentation algo-
rithm is applied. As it can be seen, the proposed method has managed to segment the
objects with high precision (96% on average).
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Fig. 11. The GT intersection over union for the proposed method in blue
and the baseline in red with no segmentation applied on trajectories.

Although our method performs reliably, it could suffer from some points. First,
the segmentation task depends on the distance between trajectories, and since our dis-
tance measure (6) only allows for the verification of translational model, we might have
problems with segmenting other models of motion. For example, the legs of the cat
in Seq. cats02 are wrongly segmented because we deal with fast scaling. The second
problem could arise from optical flow or trajectory inaccuracy. Although we used one
of the promising optical flow methods, we could still have problem in situations with
fast motion and low texture. This could be visualized in the last image of Seq. cats04
where the low texture cat dose a fast jump and trajectories are wrongly developed.

4.3 Performance on Cerebral Palsy detection

In [18], the proposed method is applied on a set of 82 videos of infants with the same set-
up as mentioned in early this section. For each of the infants six trajectories representing
motions of different body parts are developed, then a set of features are extracted, and
finally, the classification results are compared with those obtained by electromagnetic
sensors. The comparison shows the advantage of our method.

5 Conclusions

In this paper, we dealt with segmenting and tracking the body limbs of infants in order to
provide an analytical tool for clinical diagnosis. The sequences pose multiple problems
such as parts having similar appearances, moving in complex ways, and being regularly
occluded. Moreover, these parts need to be segmented and tracked with high precision.
In our evaluation, the state-of-the-art trackers and motion segmentation algorithms had
severe problems with these videos. The manual introduction of prior knowledge ap-
peared to be mandatory at that point, but of course the overhead needed to be kept at
a minimum. Therefore, a framework was designed that allows prior knowledge to be
integrated into motion segmentation. We proposed a novel energy-minimization-based
motion segmentation algorithm. Weak manual annotation came out to suffice to there-
upon handle most of the videos automatically. A simple tracker, built on top of the mo-
tion segmentation yielded results with sufficient quality. Our experiments showed that
our new approach outperforms current tracking and motion segmentation approaches.



Motion Segmentation with Weak Labeling Priors 11

References

1. Adde, L., Helbostad, J.L., Jensenius, A.R., Taraldsen, G., Grunewaldt, K.H., Støen, R.: Early
prediction of cerebral palsy by computer-based video analysis of general movements: a fea-
sibility study. Developmental Medicine & Child Neurology 52(8), 773–778 (2010) 1

2. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Intl. Journal
of Computer Vision 70(2), 109–131 (2006) 2, 3

3. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In:
ECCV. pp. 282–295 (Sep 2010) 2, 3, 4, 6, 8, 9

4. Cheriyadat, A.M., Radke, R.J.: Non-negative matrix factorization of partial track data for
motion segmentation. In: ICCV. pp. 865–872 (Oct 2009) 2

5. Dragon, R., Rosenhahn, B., Ostermann, J.: Multi-scale clustering of frame-to-frame corre-
spondences for motion segmentation. In: ECCV (Oct 2012) 2

6. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR. pp. 2790–2797 (2009) 2
7. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. TPAMI 34(7), 1409–1422

(2012) 2, 5, 7
8. Kanemaru, N., Watanabe, H., Kihara, H., Nakano, H., Takaya, R., Nakamura, T., Nakano, J.,

Taga, G., Konishi, Y.: Specific characteristics of spontaneous movements in preterm infants
at term age are associated with developmental delays at age 3 years. Developmental Medicine
& Child Neurology (2013) 2
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