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Abstract— Analysing distinct motion patterns that occur
during infancy can be a way through early prediction of
cerebral palsy. This analysis can only be performed by well-
trained expert clinicians, and hence can not be widespread,
specially in poor countries. In order to decrease the need for
experts, computer-based methods can be applied. If individual
motions of different body parts are available, these methods
could achieve more accurate results with better clinical insight.
Thus far, motion capture systems or the like were needed in
order to provide such data. However, these systems not only
need laboratory and experts to set up the experiment, but they
could be intrusive for the infant’s motions. In this paper we
build up our prediction method on a solution based on a single
video camera, that is far less intrusive and a lot cheaper. First,
the motions of different body parts are separated, then, motion
features are extracted and used to classify infants to healthy or
affected. Our experimental results show that visually obtained
motion data allows cerebral palsy detection as accurate as state-
of-the-art electromagnetic sensor data.

I. INTRODUCTION

Early identification of cerebral palsy (CP), one of the
major disabilities resulting from preterm birth [12], [13], fa-
cilitates early intervention and targeted follow-up of children
who are likely to develop CP, and provides reassurance to
the parents of children who are unlikely to develop CP. The
diagnosis of CP is traditionally assured by 2 years of age,
but reassessment can not provide the sub-type and clinical
picture in young children with CP until 4-6 years of age [6].
Research has shown that assessment of general movements
in young infants can be used as an early prognostic tool
to identify CP during the fidgety movement’s period (9-
18 weeks post term age) [5]. However, the assessment is
based upon an expert’s clinical observation, which limits the
widespread clinical use of general movements ([1], [2]).

Over the last years, a number of computer-based move-
ment assessment tools have been developed aiming at per-
forming quantitative analysis during the fidgety movement’s
period ([14], [11], [10]). However, they suffer from draw-
backs that limit their widespread use. They must be in-
stalled in a controlled environment, use instrumentation that
might affect the infant body movements, and experts are
needed for interpretation and analysis of results. Recently,
our research group has reported accurate results in the
detection of abnormal general movements and prediction of
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CP using a normal monocular 2D camera and a simple frame
differencing software without any need for instrumentation of
the infant [2], [1], [16] . While these early studies show great
promise, the algorithms used for data analysis are sensitive
to lighting conditions, clothing and skin color. In addition,
the video stream is aggregated into movement variables or
features that provide limited clinical insight.

In a clinical observation, there are many features that can
be used to predict cerebral palsy. Most of these features can
be employed by a computer-based method only if individual
motions of different body parts are available. In addition,
the relation between motions of body parts might have a
strong analytic cue for prediction of CP status and CP
sub-type [9]. Therefore, in order to provide an improved
analytic tool to study general movements and predict CP we
proposed in [15] a new motion segmentation method that
tracks individual body parts separately using just a standard
monocular video camera without need for extra equipment.
In the present paper, we employ this methodology to the
problem of predicting CP, and compare the results with those
obtained by using state-of-the-art motion tracking sensors.

We hypothesized that our proposed video segmentation
method had accuracy in predicting CP alike the specific mo-
tion tracking sensors when the assessments were performed
during the fidgety movements period using the same motion
features and classification methods. To do so, our paper
provides a method to extract features from motion data of
infants and classify the extracted information into one of
the classes (healthy or affected) using a classification model,
wherein the classification model is trained using data derived
from the movements of other subjects with known category.

The extracted information relates to patterns of movement
which may, or may not, be readily recognisable to a human
observer. Since this approach does not involve or require
these patterns to be defined or recognised as such, the method
is not dependent on particular human-defined parameters.
Instead, the information is extracted from the movement data
in order to classify them. Thus, the present technique can take
movement phenomena that are otherwise incomprehensible
to humans (or they are comprehensible just for experts) into
account, for example because they involve complex inter-
relationships of the movements of a plurality of limbs.

The paper is structured as follows: Section II summa-
rizes the motion segmentation method. Section III explains
the feature used for classification. Section IV focuses on
classification issues. Section V explains how input data are
collected. In section VI, numerical results are discussed.
Finally, section VII concludes the paper.



II. MOTION SEGMENTATION

In this section, we explain the measurement system that
extracts the motion trajectory for each body part out of a
monocular video without extra instruments. Our measure-
ment system is based on a framework proposed by [15].
This method obtains a track (trajectory) for an object in three
phases. First, dense trajectories of movement are computed
for the whole image. Second, a graph-based segmentation
algorithm is applied to the set of trajectories in order to
separate them into groups representing the individual body
parts. Third, a tracker is applied to each group to compute
one single trajectory for each body part. In the present case,
six groups were used, representing the right hand and arm,
the left hand and arm, the right foot and leg, the left foot
and leg, the head, and the trunk.

A. Trajectories

Trajectories spread over the whole canvas of the video
are obtained using optical flow. We use the LDOF (Large
Displacement Optical Flow) algorithm proposed by [17],
because it provides a very dense trajectory field which is of
particular importance in our application. In detecting cerebral
palsy, the key feature is fidgety movement, which can occur
in any part of the infant’s body. So, having a tracker which
is able to cover the whole body and tracks every points
might end up with a more reliable diagnosis. Furthermore,
since the distribution of trajectories from optical flow is
more uniform than from salient points, such as SIFT (Scale
Invariant Feature Transform) [18], the segmentation, which
is the second step, is more accurate.

B. Segmentation

To distinguish individual body parts from each other,
trajectories are separated into groups - referred to as seg-
ments - such that similar ones are mapped to the same
segment. The task of splitting is performed by a graph-cut
optimization where each vertex of the graph represents a
trajectory, and vertices are connected by weighted edges. The
weights are measures of similarity between the trajectories.
Qualitatively, the weight between two trajectories is higher
the closer they are to each other, and higher the more similar
their motion patterns are. The output of this phase is an
assignment (labelling) of each trajectory to one of the pre-
defined segments. As only human interaction, the user must
initially label a small number of trajectories manually. The
upper row of Figure 1 shows segmentation result for an
infant.

C. Tracking Based on Segmentation

The final stage of the method provides one single trajec-
tory for each body part. The algorithm iteratively computes
the trajectory using the set of trajectories assigned to segment
i, denoted Oi, as follows. For each time t, we define the
subset of all trajectories s ∈ Oi that are visible at t and t+1
as St. Let xs

t and xs
t+1 denote the locations of s ∈ St at

time t and t + 1, respectively. Initialize x0 from the center

of mass of all trajectories assigned to Oi in the first frame,
that is

x0 =
1

|S0|
∑
s∈S0

xs
0. (1)

Computing the location of the trajectory by using the center
of mass of Oi at t > 0 will fail due to discontinuity from
partial occlusions. Instead, the following iterative procedure
is used to update the tracker results

xt+1 = xt +
1

|St|
∑
s∈St

(xs
t+1 − xs

t ). (2)

Since eq. (2) builds the update step by exploiting a large
number of trajectories, it can filter out noise and unreliable
trajectories, as long as their effects remain small compared
to that of the majority of correctly labeled trajectories.
The lower row of Figure 1 shows tracking result for the
segmented body parts of an infant.

In order to overcome the illumination effect, LDOF
constrains on gradient which is invariant to illumination
changes. In addition, it integrates descriptor matching to the
variational technique that makes the flow fields more robust.
Furthermore, averaging over large set of trajectories reduces
the noise effect. These make the obtained trajectories robust
to illumination change and different skin color and clothing.

III. FEATURES EXTRACTION

Feature extraction involves reducing the amount of infor-
mation required to describe a large set of data accurately and
problem-specific. When analyzing complex data, one of the
major problems arises from the number of variables involved.
Analysis with a large number of variables generally requires
a large amount of memory and computation power or a
classification algorithm which overfits the training sample
and generalizes poorly to new samples. Feature extraction
is a general term for methods of constructing combinations
of the variables to get around these problems while still
describing the data with sufficient accuracy.

As described in [8] the lack of a fluent character in the
movement and the rigidity of the body could be a predictor
for CP. A nonfluent motion pattern and rigidity of the body
can be observed in the motion signal. For visual comparison
the components of typical motion trajectories of an impaired
and an unimpaired infant are shown in Figures 2 and 3.
In addition, a high correlation between two limbs might
indicate a lack of normal behaviour [9]. Among extensive
features that could be employed for the task of CP detection,
three types of features are extracted as proposed in [14]:
area out of standard deviation (STD) from moving-average,
periodicity and correlation between trajectories. The first
two represent fluency and monotony character of the motion,
and the last is a measure of mutual dependencies between
the limbs motions.

A. Area Out of STD from moving-average

The movement of an unimpaired infant is smoother com-
pared to impaired one. A parameter that could represent
smoothness of a trajectory is its deviation from an average



Fig. 1. Overview of segmentation (upper row) and tracking (lower row) results of [15].

version of its motion. This deviation is calculated by measur-
ing the area out of STD from moving-average. To measure
this feature, first, the moving average for each point xt of the
trajectory is calculated as the arithmetic-mean of a window
of the trajectory centered on that point as follows,

x̄t =
1

nw

∑
k∈wt

xk, (3)

where wt is a subset of the trajectory centered on xt, and nw
is the size of wt. nw should be so large that neither averaging
is meaningless nor it is diffused. In our experiments nw =
25, which it is equal to number of samples in 1s. Then, the
standard deviation for each point is obtained:

σ2
t =

1

nw

∑
k∈wt

(xk − x̄k)2 (4)

Finally, the area of the trajectory that exceeds x̄t ± σt is
summed up and normalized by the length of the signal in
order to calculate the area out of STD from moving-average
for that trajectory. The red area in Figure 2 shows this feature.

B. Periodicity

As Figure 3 indicates, the movement of an affected infant
is more stationary and periodic while a healthy infant show
more complicated, time-dependant characters in their motion.
The periodicity P of the signal can be seen as a measure
for the occurring frequencies in the movement patterns. We
measure P by counting the number of intersections between
the signal and a local mean-value. To do so, we divide the
signal into three subsets with equal length and calculate the
mean value for each subset, black solid lines in Figure 3, then
calculate the time-spans between consecutive intersections
between these lines and the signal. Then, the arithmetic mean
µ and standard deviation σ of these time-spans are derived.
Finally, periodicity is defined as

P =
1

µ+ σ
. (5)

Since µ and σ are independent of the signal length, we don’t
need to normalize the periodicity with the signal length.

Fig. 2. Horizontal position over time (pixel vs frame) for the right hand.
Area out of STD of moving-average for an impaired (left) and an unimpaired
infant (right). Solid black, dash-dot blue, and dash red lines are the moving-
average, main trajectory, and borders of STD, respectively. The red area
show area out of STD from moving-average.

0

0

0

0

0

0

0

0

Fig. 3. Horizontal position over time (pixel vs frame) for the right
foot. Periodicity for an impaired (left) and an unimpaired infant (right).
Solid black lines show the local mean-values, and blue lines stand for the
trajectories.

C. Correlations Coefficient

Affected infants tend to show more mutual dependencies
on their body motion with respect to healthy ones where each
body limbs moves more independently. To measure these
dependencies we calculate correlation coefficients between
body limbs as well as the head and the trunk.

The aforementioned features are calculated separately for
each trajectory (two hands, two feet, head, and trunk) and
combined to a feature vector for a whole sequence. In the
next step, the feature vector of different infants are used as
input to train the classifier. In the classification phase the
trained classifier assigns one of the two classes (affected and
healthy) to each member of the test set.

IV. CLASSIFICATION

Due to promising performance of support vector machine
classifiers (SVM) as well as having properties such as
simultaneously minimizing the empirical classification error
and maximizing the geometric margin between different



classes, we consider this classifier for our classification task.
SVM is a supervised learning method that analyzes data and
recognizes patterns used for classification. Given a set of
training data, each labeled as belonging to one of two classes,
an SVM training algorithm builds a model that assigns new
data into one class or the other.

A support vector machine constructs set of hyperplanes in
a high- or infinite-dimensional space, which can be used for
classification, and tries to find the hyperplane with largest
distance from the nearest points of any training data classes.
The original idea of optimal hyperplane was a linear classifier
and it is generalized to nonlinear case by introducing kernels
that map the space to a higher dimensional such that it is
linearly separable in the new space [3]. The current standard
incarnation was proposed by [7], it uses soft margin to
choose a hyperplane that splits the training set as cleanly
as possible in situations where there is no hyperplane that
can classify all the data correctly.

The effectiveness of SVM depends on the selection of
the kernel functions and soft margin parameter C. In our
application any value C ≥ 1 led to the same results, and
we choose the kernel function to be linear and the margin
parameter C = 1.

V. INPUT DATA

The data set we studied consists of 78 infants with an age
of 10-18 weeks post-term, from which 12 were confirmed
diagnosed with CP at five years age and two at two years age.
Therefore, altogether 14 of the 78 infants were confirmed
diagnosed with CP. Two sets of data were captured from
each infant: first, 6 sensors placed on the body, one for each
wrist, one for each ankle, one for head, and one for chest,
to measure the infant’s movement. As the second data set,
infants were filmed by a normal monocular camera at the
same time when sensors were capturing the motions.

A. Video Data

A Sony DCR-PC 100E camera recorded the videos of
the infants with a frame rate of 25 frames/s. The infant
was placed on a standard mattress with rigid, transparent
walls and a stationary digital video camera was installed at
a distance of about 110 cm above the infant. This resulted in
an experimental set-up where a similar camera position was
assured for all recordings.

B. Sensor Data

Movements of the infants in terms of x, y, and z coor-
dinates were captured simultaneously with 25 Hz using six
miniBird motion sensors. One sensor was placed on each of
the infant’s wrists, one on each ankle, one on the sternum
and one on the forehead as described in Table I and Figure 4.

Each infant’s movement data is extracted from one of
several recordings. The interesting and relevant temporal
parts of the selected recording, also referred to as Region
Of Interest (ROI), has been analysed and selected by a
physiotherapist. This means that every record contains one
or more ROIs. As an example, Figure 5 displays measured

TABLE I
PLACEMENT OF THE SENSORS [4].

Sensor nr. Placement
Sensor 1 Left ankle
Sensor 2 Chest
Sensor 3 Right wrist
Sensor 4 Left wrist
Sensor 5 Right ankle
Sensor 6 Head

Fig. 4. Coordinate system [4].

values for all 6 sensors in xy-plane for a simple ROI. It can
be concluded that all the data accessed and utilized during
this paper, is composed of ROIs from infants with normal
and abnormal movements. A ROI contains time series data
from all sensors in x, y and z directions.

Fig. 5. Measurements from different sensors [4].

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we study the classification performance
on data sets from both sensors and the motion-segmentation
method. To do so, first, we obtain track of the body parts
as explained in section II. Then, the aforementioned fea-
ture set is extracted from both sensor data and trajectories
obtained by the motion-segmentation method. Finally, the
same classifier is applied on the both feature sets to separate
affected infants from healthy ones. We used cross-validation
to assess how the results of our analysis will generalize to
an independent data set. To do so, an iterative procedure is
considered such that each time one of the subjects is used for
testing the classification model built by training the classifier
on the rest of the data set. This is repeated until all the data
set has been used for testing once. To measure the prediction
performance, we use three measurements as follows,

Sensitivity =
TP

TP + FN
,



Specificity =
TN

TN + FP
,

Accuracy =
TP + TN

TP + FN + TN + FP
,

where TP is the number of correctly labeled as affected,
FN is the number of wrongly diagnosed as healthy, TN
is the number of correctly detected as healthy, and finally,
FP is the number of wrongly labeled as affected. Table II
shows these results for both data sets. As it can be seen,
the data provided by motion segmentation method is as rich
as sensor data with respect to classification results. The
reason for slightly better results of motion segmentation
is that this method obtains a track for the body limbs by
using information of a large set of trajectories tracking
different particles on each part. Therefore, it captures more
informations. In addition, considering the fact that motion
segmentation method uses only 2D motions of the videos,
while results for sensors are based on 3D motions, makes
our results more valuable.

By further notice to the results, it can be seen that the
achieved sensitivity is relatively low. The reasons for that
could be twofold: first, although we have the most com-
prehensive data set reported so far, the number of affected
infants is just 14 and this is a small number to derive a
general model for affected infants. Second, we used the
features proposed by [14] which might not be sensitive
enough.

TABLE II
CLASSIFICATION RESULTS FOR BOTH SENSOR AND THE

MOTION-SEGMENTATION DATA SET.

Data set Sensitivity Specificity Accuracy
Motion Segmentation 50% 95% 87%
Sensor Data 50% 92% 85%

Considering the fact that our method is based on a simple
monocular camera, and doesn’t need any extra equipment
or clinician experts, makes it economically cheap to predict
CP and it could be used in all clinics, as it is our final
goal. These facts make our method even more valuable. The
proposed method is the first video based approach that treats
different body parts separately. Since the track for each part
is obtained from a large set of points on that part, the results
are more robust to noise. In addition, it could capture every
small motion of the body parts. Finally, having motions of
different parts separately has the potential of distinguishing
CP sub-types.

VII. CONCLUSIONS

Early detection of cerebral palsy is important in order to
establish training programs to reduce the functional conse-
quences of the brain damage. This is possible by analyzing
motion patterns that occur during young infancy. Previous
computer based approaches suffer either from being intrusive
to the infant’s motion pattern by using extra instrument, or

lack of precise analytic explanation for their results weak-
ening the construct validity of the methods. In this paper,
we employed the motion-segmentation method to extract
motion data out of video. By this, we strongly indicate the
possibility of bringing such assessments into clinical settings
without need for clinical experts. It is expectable to increase
possibilities to make predictions of also CP sub-types by
analyzing different body parts separately. The experimental
results indicate that our motion-segmentation method could
replace motion capture system.
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