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Abstract. In this paper, we analyze and modify the Motion-Split-and-
Merge (MSAM) algorithm [3] for the motion segmentation of correspon-
dences between two frames. Our goal is to make the algorithm suitable
for practical use which means realtime processing speed at very low error
rates. We compare our (robust realtime) RMSAM with J-Linkage [16]
and Graph-Based Segmentation [5] and show that it is superior to both.
Applying RMSAM in a multi-frame motion segmentation context to the
Hopkins 155 benchmark, we show that compared to the original formula-
tion, the error decreases from 2.05% to only 0.65% at a runtime reduced
by 72%. The error is still higher than the best results reported so far,
but RMSAM is dramatically faster and can handle outliers and missing
data.

1 Introduction

In the past years, the motion segmentation of tracked features has been receiv-
ing increasing attention since it can be used as a strong prior in dense object
segmentation [9], for the unsupervised learning of object detectors [11], or for
tracking [14]. In order to track objects under occlusions, [3] proposed to apply
motion segmentation on the basis of correspondences between independently de-
tected SIFT keypoints instead of tracked features. In order to handle outliers and
missing data, they carry out motion segmentation on the basis of multiple frame-
to-frame motion segmentations, called multi-scale motion clustering (MSMC).

Fig. 1. Sequence panning from the Airport Dataset, segmented with our RMSAM &
MSMC. The segmentation allows learning object keypoints from object motion.
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For the frame-to-frame core, they propose an adapted version of the classical
split-and-merge for images, called motion-split-and-merge (MSAM). On one side
MSMC allows the segmentation of trajectories with large amounts of unknown
or erroneous data. On the other side, the MSAM core contains many parameters
and is not stable and fast enough for real time applications.

In this paper, we thoroughly analyze the components of the MSAM algo-
rithm and derive a robust realtime variant, coined RMSAM. Our contributions
are the formulation of RMSAM, a detailed analysis of its parameters, and an
extensive evaluation on the Hopkins 155 [18] benchmark and our new Airport
Dataset3. This paper is organized as follows: In Sec. 2, we give an overview of
related work. In Sec. 3, the original approach MSAM is explained, analyzed
and modified towards realtime RMSAM. In Sec. 4, we provide experimental
evaluations, and in Sec. 5, a summary and a short conclusion is given.

2 Related Work

2.1 Multi-Frame Motion Segmentation

Existing approaches to multi-frame motion segmentation can be classified into
subspace-based and affinity-based. In the first class, a measurement matrix W is
constructed consisting of all points of all trajectories. Trajectories from different
motions lie in different subspaces of W, so the motion segmentation can be
found by subspace assignment. This is algebraically elegant and allows very
good results, as in agglomerative lossy clustering (ALC) [12] or sparse subspace
clustering (SSC) [4]. However, these approaches require that tracked points only
go missing (e.g. due to occlusions) in a certain way and up to a limited degree.
For instance, ALC and SSC need at least one trajectory with complete data.

Affinity-based approaches do not come with such constraints since only the
pairwise relationship between trajectories (affinity) is analyzed. Cheriyadat and
Radke [2] decompose the trajectory features speed and direction using non-
negative matrix factorization (NNMF). The resulting weights are used for an
affinity measure. Fradet et al. [7] propose affine motion similarity as basis for
affinities which are clustered by J-Linkage [16]. Brox and Malik [1] use spatial
distance and similarity of translational motion to compute affinities which are
then clustered with Spectral Clustering [8]. In order to render the motion sim-
ilarity more precise, they propose to analyze triplets of trajectories [10] which
allows them to add scale and rotation to the motion model. The MSMC ap-
proach [3] allows for arbitrary frame-to-frame motion models. First, correspon-
dences between pairs of frames are motion-segmented at different time scales
using MSAM. In a second step, ambiguities are resolved by observing common
frame-to-frame motion during a longer time span.

3 Available at http://www.vision.ee.ethz.ch/~dragonr/airport.

http://www.vision.ee.ethz.ch/~dragonr/airport
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2.2 Frame-to-Frame Motion Segmentation

In the MSMC-approach, the parametrization of motion plays an important role
to resolve ambiguities. RANSAC [6] first tackles the parameter estimation of
data from one underlying parametrization mixed with random data. Fischler
and Bolles derived the number r of trials to find an inlier-only minimal sampling
set (MSS) – the smallest set of inlier data points to estimate parameters:

r ≥ log(1− p)
log(1− wL)

, (1)

where L is the cardinality of an MSS, w is the inlier ratio and p is the probability
of finding an inlier-only MSS with r trials. In this paper we use p = 0.95. As it
can be easily verified, L has a huge impact on r, especially if w is small.

Torr [17] extended RANSAC to the multi-model case by applying it sequen-
tially on the remaining outliers. However, w is very small for the first motion
since all other segments count as outliers. Additionally, sequential RANSAC
is biased towards rendering small segments too small and big segments too big
since it is too greedy [15]. A further problem pointed out by [19] is that sequential
RANSAC detects phantom motions originating from the interaction of different
moving objects. In the field of model selection, the problem is known as overfit-
ting (too many degrees of freedom) vs. oversegmentation (too few degrees).

In order to tackle the multi-model problem, Schindler and Suter [13] proposed
a sample-and-cluster paradigm. In the first step, N motion models are randomly
sampled. In a model selection step, multiple models are selected such that a
precise modeling is achieved at a low complexity. Similarly, in J-Linkage [16],
an inlier matrix I is constructed. It specifies the inlier- and outlier relationship
between all data points and N different motion parameters which are estimated
from random local MSSs. The data is clustered bottom-up with agglomerative
clustering. The affinity between segments is derived from common occurrences
of inliers using the Jaccard distance.

A parameterless alternative is the graph-based image segmentation (GBS) [5].
Stalder et al. [14] adapted it to motion segmentation. In this approach, a graph
between neighboring correspondences is established with difference in transla-
tional motion as weights. GBS finds segments such that intra-segment weights
are low and inter-segment weights are high. In summary, in the MSMC context,
the parametrization is essential to resolve ambiguities. We can use GBS as a
strong parameterless baseline in frame-to-frame motion segmentation.

3 Robust Realtime Motion-Split-And-Merge (RMSAM)

Next, we derive the RMSAM algorithm. Its parameters are determined using
ground-truth-labeled correspondences Y from our Airport Dataset. Given the
ground truth object segments Vk as well as the best-matching permutation of
the estimated segments Sk, we compute the average object specific

precision =
|Sk ∩ Vk|

|Sk ∩ Vk|+ |Sk ∩ (Y\Vk)|
, recall =

|Sk ∩ Vk|
|Sk ∩ Vk|+ |(Y\Sk) ∩ Vk|

(2)



4 Ralf Dragon, Jörn Ostermann, and Luc Van Gool

over all objects k and ground truth frames in a sequence. The results over all
sequences are averaged. To show the variation over the sequences we additionally
give 20% and 80% quantiles.

3.1 Enforcing Convergence

The original MSAM formulation consists of the following 4 steps which are
carried out every iteration until all segments remain unchanged:

1. Split segments: Motion parameters pk of each segment Sk are estimated
using RANSAC, assuming an inlier ratio of τ(Sk | pk) ≥ θs to determine the
number of trials r according to (1). If this assumption holds, correspondences
from Sk which are not inlier according to pk are removed from Sk and added
to the outlier segment SO. Otherwise, the segment is split into two parts
using an adapted version of J-Linkage, as further explained in Sec. 3.2.

2. Merge segments: Each pair of segments (Sk,Sl) is merged if the inlier ratio
τ(Sl | pk) of the smaller segment Sl according to parameters pk is larger
than a threshold θm.

3. Split outliers: Using the adapted J-Linkage, the outlier segment SO is split
into two like a regular segment in step 1. Resulting parts which are large
enough are added as regular segments.

4. Merge outliers: Each correspondence from the outlier segment SO is assigned
to a segment Sk if it is inlier according to its parameters pk.

Even if enforcing that merged segments cannot immediately be split again (1 +
θm ≥ 2θs), it is easy to find an example in which a segment becomes cyclically
split and merged. For instance, RANSAC might not find good parameters and
the segment is accidentally split which is corrected by a merge in the following
iteration, leading to the original state.

By discarding step 3 (Sec. 3.3) and imposing the following constraint, we
enforce convergence: Once a valid parameter vector pk with an inlier ratio τ(Sk |
pk) > θs has been found in step 1, it is kept fixed for the segment. pk is not
recomputed if we merge a smaller segment (step 2) or outliers (step 4) to it.
We call such a segment consistent since after the removal of outliers in step 1
of the following iteration, the inlier ratio is τ(Sk | pk) = 1. Besides enforced
convergence, this measure allows speeding up step 2 by remembering a decision
for further iterations. In RMSAM, we choose to split as early as possible, i.e.
θs = 1/2 + θm/2. As Fig. 2a shows, the performance is not very dependent on the
choice of θm. For highest precision, we use θm = 0.9, thus θs = 0.95.

Proof of Convergence: The approach finishes if no step is carried out.
Equivalently, all segments Sk have an inlier ratio τ(Sk | pk) = 1, they cannot be
merged and all correspondences from SO cannot be merged into any segment.
Since all steps necessarily lead to an increasing4 τ(Sk | pk), the algorithm has
to converge.

4 In the merge step 2 (including the successive outlier removal), the bigger segment
has increasing τ and the smaller is dissolved. This ordering by size prevents cyclic
growing and dissolving of a segment.
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Fig. 2. (a) Analysis of the merging threshold θm, (b) the inlier sampling factor α and
(c) the smallest detectable segment parameter β.

3.2 Adaptive Fast Split into 2 Segments

In the original MSAM formulation, an adapted J-Linkage is proposed to split
a segment S into two parts. It differs by the sampling strategy to construct the
inlier matrix I, and by the clustering method:

1. To raise the inlier ratio, a best-of-n strategy is applied which makes no
assumption on the spatial distribution of the segments.

2. The segmentation is carried out with K-Means instead of agglomerative clus-
tering since the number of clusters (K = 2) is known a-priori. The cluster
vectors are the columns from an affinity matrix incorporating motion simi-
larity through the Jaccard distance and spatial similarity through the Ma-
halanobis distance.

In order to raise the probability of sampling an inlier-only MSS, we take into
account the spatial distribution. However, in contrast to the J-Linkage approach,
we choose the neighborhood size adaptive to the clustering problem. We propose
adaptive localized sampling: The first point x0 is drawn with uniform probability.
All remaining points are drawn with

p(x) ∝ exp

(
−M

2(x,x0)

2σ2
s

)
, (3)

where M is the Mahalanobis distance inside S, and σs, empirically set to 1,
determines the neighborhood size. By this, enough inliers are found such that the
best-of-n-sampling is not necessary. This leads to a significant runtime reduction
to obtain the same amount of inliers, e.g., in the Airport Dataset by 84%.

An open question is how many samples N should be used to construct I. Too
few samples lead to high uncertainty during the clustering, while too many lead
to a long runtime. In MSAM, N = 10 was proposed while it is much higher
in J-Linkage (usually 1000 or more). However, different split problems require a
different amount of investigation. A heuristic that prevents using either too few



6 Ralf Dragon, Jörn Ostermann, and Luc Van Gool

or too many samples is to sample until more than α|S| inliers are found, where
a reasonable choice is α = 10 (Fig. 2b). With this, simple clustering problems
are solved with a low N and complex ones with a high N to ensure a sufficiently
detailed analysis of the data.

The sampling goal of finding α|S| inliers might never be reached, e.g. when
the segment completely consists of outliers. In order to limit the number of sam-
ples to an upper bound Nmax, we follow the idea of having a smallest detectable
segment Sm in S. Let β = (|S| − |Sm|)/|Sm| be its ratio of outliers to inliers. If
S contains exactly one segment S ′ with |S ′| ≥ |Sm|, an inlier-only MSS is found
with a probability p according to (1) in r = Nmax trials:

Nmax =
log(1− p)

log

(
1−

(
1

β+1

)L) . (4)

As shown in Fig. 2c, β = 2 is a reasonable trade-off between runtime and preci-
sion. This means that segments which are smaller that one third of the number
of outliers are unlikely to be detected. In order to detect such segments, the best
choice is to reduce the number of outliers by measures like stricter matching
thresholds.

3.3 Re-Distilling

Step 3 from MSAM is necessary to find small segments which were accidentally
added to the outlier segment. Apart from wanting to avoid the convergence
problem (Sec. 3.1), it does not seem reasonable to carry it out during every
iteration since SO may remain unchanged. Especially if SO is large or if many
iterations are carried out, this has a huge impact on the runtime.

RMSAM handles this differently: Initially, all correspondences are put into
one segment, which is iteratively processed with steps 1, 2 and 4. Upon con-
vergence, the outlier segment SO is treated as initial segment and iteratively
processed with steps 1, 2 and 4 again – it is “distilled” a second time. All other
consistent segments Sk stay the same during the re-distilling since all correspon-
dences from SO are not inliers to the parameters pk and thus will never be
merged into Sk in steps 2 or 4. Since the outlier segment may contain only true
outliers, the re-distilling is only carried out a certain number of times νr. We
choose νr = 3 as this is the largest value that still yields a significant increase in
precision (Fig. 3a).

4 Experiments

4.1 Model for Frame-to-Frame Motion

In this section, we compare the performance of the translational, affine, homo-
graphical and epipolar motion models5. If the model is too general, segments are

5 Since epipolar motion only allows analyzing the model error in the direction orthog-
onal to the epipolar line, its inlier threshold ε is not comparable to the thresholds of
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Fig. 3. (a) Analysis of the number νr of redistillation steps. (b) Comparison of trans-
lational, affine, perspective and epipolar motion models.

accidentally combined and precision and recall decrease (2). On the other hand
if a motion model is too specific, the precision decreases and the recall increases
due to oversegmentation.

The results are displayed in Fig. 3b. The ratios of runtimes are 0.53 : 1 : 1.27 :
1.3, so the simple translational model is more than a factor of 2.5 faster than
the epipolar model. Lower runtimes are not only related to lower computational
complexities but also to smaller minimal sampling sets (MSS). The latter raises
the probability of sampling an MSS from one underlying motion, thus allowing
for a lower N during an adaptive split. The precision is the highest for the affine
and homographical motion model with only very small differences between them.
We use the first since it is significantly faster. The epipolar model performs worst
in recall and runtime, so it can be discarded.

To conclude, the affine motion model is best suited for our motion segmen-
tation. For fast segmentation, a translational motion model may be used at the
cost of lower precision. We have to keep in mind that the choice of motion model
is dependent on the observed scene and its motion, here the Airport Dataset.
However, as we will show in Sec. 4.3, the affine motion model is also applicable
in the Hopkins benchmark, so we are not overfitting to the training data.

4.2 RMSAM vs. GBS vs. JL

We now compare our RMSAM algorithm with J-Linkage (JL) and the graph-
based segmentation (GBS) from [14]. For fair comparison, we treat segments
with less than 8 correspondences as outlier segments. In GBS, the parameter k
which describes the homogeneity of segments is empirically optimized as k = 50.
JL is run with parameters which combine good performance and reasonable
runtime: N = 1000 samples with a neighborhood of σ = 1000 pixel. The outlier
threshold of RMSAM and JL is set to ε = 3 pixel.

the translational, affine and homographical motions. We empirically found the best
results for an ε-threshold which is half that of the others.
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Fig. 4. Object precision and recall over the different sequences (bars) and their averages
(dotted lines), using RMSAM, GBS and JL. The average runtimes per frame are 0.21 s,
0.20 s, and 4.90 s, respectively.

RMSAM JLGBS

Fig. 5. Qualitative comparison of the segmentation of RMSAM, GBS and JL in the
sequence 4 of the Airport Dataset. The numbers in parenthesis denote the number
of correspondences inside a segment. JL tends towards oversegmentation, RMSAM
towards combining outliers to ghost segments and GBS towards integrating outliers
into regular clusters or vice-versa since it does not enforce a consistent parametrization
along one segment.

The results in terms of object precision, recall and runtime are given in Fig. 4.
In Fig. 5, a qualitative comparison is given which allows to assess the different
characteristics. Our RMSAM achieves the best average object precision and
recall at low processing times. Compared with JL, it performs better in almost
all sequences at lower runtime. In sequences with slow motions, GBS, which does
not use an outlier threshold, performs better than RMSAM. However, its results
are much worse for sequences with large or non-translational motions since GBS’
translational motion assumption is violated.

4.3 Hopkins 155 Benchmark

In order to evaluate the performance of RMSAM in a multi-frame motion seg-
mentation context, we use it in combination with MSMC in the Hopkins 155
benchmark [18] consisting of the 3 categories Checkerboard, Traffic and Articu-
lated. Since the Checkerboard sequences are mainly designed to verify analytic
properties of subspace-based approaches and are not intuitive to cluster for hu-
mans, we skip these sequences, as [2,3,7] also do.
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Approach ALC [12] SSC [4] NNMF [2] MSAM [3] VLS [7] RMSAM
Missing Data constrained constrained yes yes yes yes

Articulated, 2 motions, 11 sequences
Error 10.70 % 0.62 % 10.00 % 6.03 % 5.38 % 2.38 %

Articulated, 3 motions, 2 sequences
Error 21.08 % 1.42 % 15.00 % 8.27 % 20.41 % 1.91 %

Traffic, 2 motions, 31 sequences
Error 1.75 % 0.02 % 0.10 % 0.66 % 1.92 % 0.06 %

Traffic, 3 motions, 7 sequences
Error 8.86 % 0.58 % 0.10 % 0.17 % 4.89 % 0.16 %

All 51 sequences

Runtime 261.3s 111.8s 3.0s 13.8s 5.7s 3.9s
Recall 1 1 1 0.977 1 0.978
Error 5.41 % 0.28 % 2.82 % 2.05 % 3.80 % 0.65 %

Table 1. Segmentation error rates and the recall in the Hopkins benchmark without
missing data. The average CPU runtimes per sequence are collected from different
papers with comparable systems (our system: 3.0 GHz quadcore standard desktop PC).

We compare our RMSAM & MSMC with results reported for subspace-
based approaches (ALC [12] and SSC [4]) and for affinity-based approaches
(NNMF [2], MSAM & MSMC [3], and VLS [7]). As MSMC may classify trajec-
tories as outliers, we also report the recall according to [3, Eq. (15)]. To suppress
randomness in RMSAM and K-Means, we average over 10 repetitions.

The results in terms of average error rate and recall are displayed in Table 1.
Among all unconstrained approaches, we receive by far the best error rate at a
recall very close to 1 and at a reasonable runtime. Compared to the very best
result of SSC, we loose some accuracy, but 1) the speed goes up dramatically,
and 2) the applicability is raised further by the fact that far fewer restrictions
apply (like being able to handle any kind of missing data). It is also important to
note that all other methods are optimized for the Hopkins benchmark, while we
trained on the Airport Dataset, yet tested on the Hopkins benchmark. As has
been shown in other comparisons like object class recognition, benchmarks tend
to be biased and, as a result, training and then testing on different benchmarks
may lead to rather serious losses in performance.

5 Summary and Conclusion

In this paper, we presented the robust realtime Motion-Split-and-Merge ap-
proach (RMSAM) for motion segmentation based on correspondences between
two frames. We enforced convergence and introduced the adaptive fast split and
re-distilling. Our experimental evaluation showed that RMSAM is superior to
J-Linkage and has slightly better results than Graph-based Segmentation. How-
ever, because we parametrize motion, our approach can resolve ambiguities on a
multi-frame level. Analyzing the performance of RMSAM on the Hopkins 155
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benchmark, we showed that compared to the original formulation, the runtime
is reduced by 72%, and the error from 2.05% to only 0.65%. The error is still
higher than the best results reported so far, but RMSAM is dramatically faster,
and it can handle outliers and unconstrained missing data.

Acknowledgment This work was partially funded by ERC project VarCity,
SNF project AerialCrowd and BMBF project ASEV.
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