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Abstract

We focus on the problem of estimating the ground plane

orientation and location in monocular video sequences

from a moving observer. Our only assumptions are that

the 3D ego motion ~t and the ground plane normal ~n are

orthogonal, and that ~n and ~t are smooth over time. We for-

mulate the problem as a state-continuous Hidden Markov

Model (HMM) where the hidden state contains ~t and ~n and

may be estimated by sampling and decomposing homogra-

phies. We show that using blocked Gibbs sampling, we can

infer the hidden state with high robustness towards outliers,

drifting trajectories, rolling shutter and an imprecise intrin-

sic calibration. Since our approach does not need any ini-

tial orientation prior, it works for arbitrary camera orien-

tations in which the ground is visible.

1. Introduction

With the wide spread of cheap and light consumer cam-

eras, new applications are developing such as dashboard or

ego cameras (attached to helmets or glasses), or cameras at-

tached to bikes or remote controlled vehicles. The major

difference to traditional recording techniques is that there

is only weak human guidance: There is no object being

watched or scene being captured, but a path being docu-

mented. In this paper, we focus on paths on the ground

plane and tackle the problem of estimating the orientation

and the path of the camera — or from camera’s perspective:

Where is the ground and how do we move on it?

Such knowledge about the ground plane orientation and

offset is an important prior for many computer vision ap-

plications, e.g. tracking [7], semantic segmentation [1], free

space estimation [14], and scene analysis [5, 6]. If we use a

monocular setup, the knowledge about the ground plane is

particularly useful since it a allows to measure distances by

projecting foot points onto the ground plane. Furthermore,

if we have a moving camera, we can project the camera po-

sition onto the ground in order to relate observations from

different frames with each other.

Such a motion of a moving monocular camera is con-

best global hypothesis Ssampling prior pc(~c | S)

Figure 1. Overview over our approach. Given the prior pc(~c | S)
(left, color-coded dots) that a correspondence ~c lies on the ground

plane S, homographies are sampled (right, estimation from the

four red circles), decomposed and used as ground plane hypothe-

ses. Our Hidden Markov Model finds the best path over time

through many ground plane hypotheses. By this, S is refined and

thus the sampling prior pc.

strained since it occurs on the ground plane. An obvious

idea is to determine the plane from homographies which

are established between pairs of frames. However, these

planes are not consistently connected over time and sam-

pling points from within one plane and from the right plane

is a problem. In this work, we jointly solve the problem of

estimating the motion and finding the ground plane. We for-

mulate both unknowns as continuous hidden states in a Hid-

den Markov Model (HMM) which allows finding a smooth

solution over time. Having determined a smooth solution,

we use blocked Gibbs sampling to refine our solution. Since

our method has no orientation constraint but just enforces

that the motion vector ~t should be orthogonal to the ground

plane normal ~n over many frames, it can be used to deter-

mine the orientation in a large variety of video sequences.

This paper is structured as follows. In Sec. 2, we give

an overview over related work. In Sec. 3, we describe the

homography decomposition which is used to estimate the

ground plane and ego motion. In Sec. 4, we derive the Hid-

den Markov Model and we show how to initialize and itera-

tively refine the solution using blocked Gibbs sampling. In

Sec. 5, experimental results are presented, and in Sec. 6, we

will have a conclusion.
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2. Related Work

Existing approaches of ground plane (GP) estimation can

be classified into which and how many sensors are used, and

into the restrictions which are applied on the motion (e.g.

planar or nonholonomic) and on the camera orientation.

An obvious solution of the estimation of the GP orienta-

tion is to extract the 3D scene structure. Assuming a dom-

inant ground plane, RANSAC-like approaches can be used

for robust parameter estimation. Since there might be other

planes besides the GP in the 3D data, estimating GP param-

eters from 3D data is a multi-structure fitting task which can

be solved by approaches like J-Linkage [19]. The 3D struc-

ture can be obtained from depth sensors as LIDAR [10] or

TOF [12]. A less expensive alternative to generate 3D point

clouds is a stereo camera setup in which the ground plane

can be estimated from disparity [17]. Assuming that the

scene is static, monocular approaches for simultaneous lo-

calizing and mapping (SLAM) can also be used to extract

the 3D shape and then the GP [18, 11]. However, in con-

trast to our work, these approaches use wide-angle or omni-

directional cameras for enhanced robustness. In our work,

we tackle the problem of estimating the GP without deter-

mining the 3D structure. The advantages are lower compu-

tational complexity, lower sensitivity to degenerate configu-

rations or small field of view, and higher robustness towards

geometrical imperfections of the camera projection.

Our approach was inspired by the approach of [21] who

also assume a freely-moving monocular camera setup. They

use plane estimates from a homography decomposition as

initialization for a bundle adjustment of 3D structure and

ego-motion. However, these estimates are not necessarily

the ground plane, but façades or even planes on moving

vehicles. Furthermore, since their optimization approach,

dubbed TRASAC, maximizes a number of inlier trajecto-

ries, the GP with only few features is often not considered.

Since GP estimation has manly been used for obstacle

detection for robots and cars, the parameterization of the

motion is usually chosen problem specific. [17] assume

a fixed camera orientation with respect to the GP. Further,

they assume a downwards-looking camera which, to our ex-

perience, simplifies the problem since multi-structure fitting

is not needed. With a similar setup, [9] estimate the GP ori-

entation given the motion from dedicated odometry sensors.

Since a byproduct of our ground plane estimation is

the ego motion, our work is related to visual odometry

in which most approaches do not need a 3D reconstruc-

tion step. However, there exist only few monocular ap-

proaches. Since the reduction to a single camera leads to

ambiguities and higher noise sensitivity, constraints on the

type of motion are important. [13] propose an approach

in which camera rotations are restricted to occur around

the vertical axis. [16] show that if additionally the motion

is nonholonomic, ego motion estimates can be found from

Figure 2. The camera coordinate system with the z-axis ~ez point-

ing into the direction of view. Although n3 is obviously negative,

the ground plane is still visible.

only one correspondence which drastically reduces the sam-

pling complexity. Both methods use a decomposition of the

framewise Fundamental Matrix F which only allows to find

the translation direction – the distance is found from ded-

icated odometry sensors. Our work is more general since

we train the usual camera motion from data. Besides, in-

stead of F, we decompose the ground plane homography

H which allows to recover the translation distance up to a

constant global scale. The monocular approach in the Viso

software [4] decomposes F first and then finds the trans-

lation distance by a decomposition of H of the dominant

plane. However, this plane does not have to be the GP and,

as visible during the experiments, switching between differ-

ent planes heavily perturbs the visual odometry. In contrast,

our HMM reliably selects the true GP by enforcing orthog-

onal ego motion and GP normal over long time spans. To

the best of our knowledge, although very simple, this con-

straint has not been proposed before for visual odometry or

GP estimation. Closest is the work of [20] who used the

orthogonality as additional linear constraint to synchronize

the scales of different moving objects in monocular multi-

body SfM.

3. Sampling of Ground Plane Orientation

In order to estimate the ground plane orientation ~n and

ego motion ~t from an image pair, we decompose a homo-

graphy H which has been estimated using a minimal sam-

pling set of four correspondences. Let x̄ be the homoge-

neous representation of a 2D point in image coordinates and

~x the corresponding 3D point in the camera coordinate sys-

tem (cf. Fig. 2). The rigid coordinate transformation

~x′ = R~x+ ~s (1)

of 3D points ~x with shift ~s and rotation R is constrained as

follows if ~x are located on a plane defined by ~n⊺~x = d (~n
pointing towards the plane): The image projections x̄ are

transformed according to

x̄′ = Hx̄ = K(R+ ~t · ~n⊺)K−1x̄, (2)

where K is the camera matrix with x̄ = K~x, and

~t =
~s

d
(3)



is the translation of the camera, normalized by the absolute

distance d between the GP and the camera center.

We use the standard technique from [8, Ch. 5] to decom-

pose H into D = (~n,~t, ~r), where ~r is an axis/angle repre-

sentation of R.

For the decomposition, the camera matrix K is assumed

to be known. As we will show in the experiments, an ap-

proximate

K =





f 0 w
2

0 f h
2

0 0 1



 with f =
w

2
arctan

(

60

180

π

2

)

(4)

at an image with w and height h, assuming a horizontal field

of view of 60 degrees, is sufficiently accurate.

For a general homography H, there are four possible de-

composition Dj , out of which ~n1 = −~n2 and ~n3 = −~n4. It

is often stated (e.g. in [8, Ch. 5]) that a positive z-coordinate

nj3 can be used to determine upon visibility and to rule out

one of D1 and D2, and of D3 and D4, respectively. How-

ever when the horizon is visible in the camera, planes with

n3 < 0 are still visible (Fig. 2). Thus, we directly project

that points x̄i onto the plane, which were used to estimate

H:

x̄i = K~xi ∧ ~n⊺

j ~xi = 1 . (5)

We choose those two decompositions Dj which yield xi3 >
0 in all the resulting projected 3D points ~xi. If there is no

solution, then the points x̄i were located on different sides

of the horizon and we discard H.

4. Maximum Likelihood Time-Consistent

Ground Plane Estimation

The course over the frames f of the ground plane nor-

mal ~nf as well as the ego motion (~tf , ~rf ) during a whole

sequence is estimated using a state continuous Hidden

Markov Model (HMM) formulation defined by continuous

underlying states S, observations O, and observation and

transition probabilities po(O | S) and pt(S
′ | S), respec-

tively. Denote by Sf = (~nf ,~tf , ~rf ) the ground plane orien-

tation and ego motion at frame f . The transition probability

pt(S
f+1 | Sf ), short pt(S

f+1), describes the likelihood of

a state change due to motion or orientation changes of the

camera. The observation probability po(O
f | Sf ), short

po(O
f ), describes the probability of observing the minimal

sampling set Of = {(x̄1, x̄
′
1), . . . , (x̄4, x̄

′
4)} from which H

and its decomposition can be estimated, given that the un-

derlying state is Sf .

The model has the layered structure displayed in Fig. 3.

At each frame f , decomposition estimates from different

minimal sampling sets Of
i form competing states Sf

i . Tran-

sitions are possible from every state at frame f to every state

at f + 1. After we observed a sequence (estimated many

decompositions from different Of
i , cf. Sec. 4.3), and having

1 2 F f. . .Sf
i

1

2

3

i

...

Figure 3. The structure of the HMM. Nodes represent states S
f
i .

Each layer of states at a frame f is densely connected with the

layer of the consecutive frame f +1. The left and rightmost nodes

are the enter and exit nodes. If the nodes are assigned an observa-

tion likelihood and the edges a transition likelihood, the shortest

path according to Eq. (6) maximizes the HMM likelihood.

learned the distributions po and pt (cf. Sec. 4.2), the HMM

is used to find the most likely sequence of decompositions

through F frames:

~p ∗ = argmin
~p

lHMM(~p)

= argmin
~p

lHMM(S1
p1
, . . . , SF

pF
,O1

p1
, . . . ,OF

pF
)

= argmin
~p

F−1
∑

f=1

(

lo(O
f
pf
) + lt(S

f+1
pf+1

)
)

+ lo(O
F
pF

),

(6)

where l denotes the negative log likelihood of a correspond-

ing probability p. The path ~p ∗ is found by searching the

shortest path through the corresponding graph (Fig. 3).

4.1. Blockwise Linearity Assumption

In order to reduce the computational cost for establish-

ing the Markov model, to reduce measurement noise and to

eliminate the false of the two remaining H decompositions,

we process the sequence blockwise. Instead of each pair

of consecutive frames being decomposed into Df , a whole

block of length N receives a decomposition Bf . Assign-

ing multiple frames in a block the same decomposition is

justified by the demand to receive a smooth decomposition

regarding ~t and ~n. Furthermore, more stable block decom-

positions can be found since estimation errors can be aver-

aged out and since the homographies can be estimated over

multiple time spans.

In order to estimate one decomposition for a block of

length N , we use the first frame as reference frame: We

decompose homographies H1i between the first and the ith

frame in the block. For each H1i, there are two possible de-

compositions Di
1 and Di

2. Since the first frame is the same

for all H1i, the camera coordinate system is also the same

for all Di. Thus, we can compare two decompositions and



easily determine an energy

E(D1, D2) = ∠(~n1, ~n2)
2

+
1

2

(

(

∠(~t1, ~n2)−
π

2

)2

+
(

∠(~t2, ~n1)−
π

2

)2
)

(7)

describing the dissimilarity between two decompositions

in terms of parallel ~n and orthogonal ~n and ~t. The best-

matching decompositions are found by minimizing the error

Eblk:

~c ∗ = argmin
~c

∑

i,j≥2,i 6=j

E(Di
ci
, Dj

cj
) = argmin

~c

Eblk, (8)

where ~c ∈ {1, 2}N is a binary indicator variable. We min-

imize Eblk with QPBO [15]. Although the energy is not

necessary submodular, finding ~c ∗ is usually successful in a

very short period if the underlying homographies were sam-

pled from a planar structure.

Finally, we assign the block the decomposition B =
(~n,~t, ~r) by combining the individual sub-decompositions

Di
c∗
i
= (~ni

c∗
i
,~t ic∗

i
, ~r i

c∗
i
). While combining, we assume that

the stability of a homography H1i grows linearly with the

span si = i − 1. Thus, a decomposition receives a weight

wi proportionally to si. We combine vectors ~ni (and analog
~t i, and ~r i) to ~n by a weighted average of direction ~ni

/|~ni|

and normalized length |~ni|/si independently:

~n =

(

N
∑

i=2

wi

|~ni|

si

)

·

(

N
∑

i=2

wi

~ni

|~ni|

)

. (9)

Please note that in contrast to sampling correspondences

to estimate a decomposition D between a pair of frames, in

order to estimate a block decompositions, four trajectories

are sampled. Since the trajectories may not last over the full

block length, some decompositions may be unavailable. For

convenience, this is not expressed in equations (8) and (9),

but the implementation for estimating a block estimation

with missing data is straightforward.

4.2. Observation and Transition Probabilities

4.2.1 Modeling

The observation and transition probabilities po(O | S) and

pt(S
′ | S) from Eq. (6) are assumed to be stationary.

We model both as Gaussian mixtures over angular devia-

tions δo, and ~δ respectively.

The angular deviation for the observation probability is

simply the root mean square error of E in Eq. (8):

δo =
√

Eblk. (10)

The transition probability depends on four angular devi-

ations from a linear motion:

δ1(S
′ | S) = ∠(~n, ~n′) (11)

δ2(S
′ | S) = ∠(~t,~t ′) (12)

δ3(S
′ | S) = |~r|+ |~r ′| · sgn

(

∠(~r, ~r ′)−
π

2

)

(13)

δ4(S
′ | S) = arctan

1

|~t |
− arctan

1

|~t ′|
. (14)

The definition of Eq. (11) and (12) is straightforward.

Eq. (13) is more complicated in order to handle orienta-

tion changes of ~r, e.g. between right and left curves. δ4
in Eq. (14) needs some more explanation. The motion ~t has

been defined as a fraction in Eq. (3), thus

α = arctan
1

|~t |
= arctan

d|~n|

|~s |
. (15)

Accordingly, in the triangle spanned by the orthogonal vec-

tors d~n and ~s, α is that angle having ~s as adjacent and d~n as

opposite leg. δ4 is the deviation of this angle in two consec-

utive states. The fact that we can trade off a distance change

to the ground plane with a change in speed is inherent to the

homography decomposition. However, by the ground plane

orthogonality constraint in δo, we encourage that d remains

constant.

4.2.2 Training

We train the mixture models for po and pt using all blocks

of all city sequences of the Kitti dataset [3]. Here, different

kinds of motion patterns occur (sharp curves, acceleration

and braking) observed from a camera on a car roof. We use

GPS to compute ground truth poses and from this underly-

ing ground truth states Sf
gt and GP homographies H

f
gt (2).

Please note that this motion is quite restricted, since, e.g.,

a car does not lean into curves. However, it seems ground

truth for less restricted motions is not available.

Regarding the observation probability po, we collect

samples of δo using many decompositions Bf sampled

from inlier trajectories I(Hgt) of different blocks and se-

quences. However, although sampled from inlier trajecto-

ries, Bf still might be estimated from a degenerate sam-

pling set. We have many ground truth cues at hand to select

such bad observations (e.g., the deviations δi(B
f |Sf

gt), i =
1 . . . 4), but their weighting is unknown and using a single

cue leads to poor results. The sum of relative deviations

δfrel =

4
∑

i=1

δi(S
f+1

gt | Bf )

δi(S
f+1

gt | Sf
gt)

(16)

allows to relate the angular deviation over time between the

ground truth and the decomposition, assuming that the fol-

lowing state is given by the ground truth. For each block,



we sample 100 different inlier decompositions Bf and se-

lect that one which minimizes δfrel.

In order to estimate the transition probability pt, the

ground truth decompositions are extracted from Sf
gt and the

deviations ~δfgt are computed. However, there is no normal

associated with the GPS data – it is assumed that the camera

is always perfectly horizontally aligned with the horizon,

thus ~n = (0, 1, 0)⊺. But then δ1(S
′ | S) would always be

zero. Instead, we assume that δ1 is uncorrelated to δ2 . . . δ4,

and has the same distribution as δ2.

Having many samples of δo and ~δ, the mixtures for pt
and po are estimated using 10 components and weights ac-

cording to the relative occurrence of the components.

4.3. Sampling Decompositions

Since only a small fraction of the ground plane may be

visible, random sampling results in a small fraction of min-

imal sampling sets O which are entirely sampled from the

ground plane. Since the number of samples of each frame

quadratically raises the complexity of the HMM, we use an

iterative approach which alternates finding the underlying

HMM state and sampling for 20 times. By this, inlier-only

minimal sampling sets (MSS) are sampled with increasing

probability over the iterations (cf. Fig. 4).

4.3.1 Initial Sampling

For each block, the trajectories are initially motion-

segmented into 10 segments using multi-scale motion clus-

tering [2]. Since trajectories from the same segments are

more likely to be on the same plane, we sample such that

an MSS is within one segment with 50% probability. Our

observation is that by this, we need far less samples than we

would need with random sampling. We sample 300 decom-

positions for each block and use the best 100 according to

Eblk to find an initial estimate of the HMM’s hidden states

according to Eq. (6).

4.3.2 Blocked Gibbs Sampling

After we have an initial estimate of the underlying states

S = (S1, . . . , SF ) from all blocks f , we use blocked

Gibbs sampling for refinement. Thus, we sample further

MSSs containing trajectories to estimate further block de-

compositions. Since we cannot sample MSSs from the

HMM’s observation probability po, we introduce the prior

pc(c
f | S) specifying the likelihood of a correspondence

cf = (x̄f , x̄′f ) in the f th block given the underlying states

S . We define it as follows:

pc(c
f | S) ∝

F
∑

φ=1

po(O
φ) · w(f − φ)

· pplane(c
f | Sφ) · pstable(x̄

f | Sφ),

(17)

Figure 4. Distribution of pc (cf. Eq. (17)) in the first and 20th it-

eration of sequence 2. Red denotes high and blue low probability.

While pplane enforces that points which do not fulfill the plane mo-

tion (e.g. the houses on the right), pstable cancels out solutions over

the horizon (cf. Fig. 5) and which would be located very far if on

the ground plane.

Figure 5. Minimal sampling sets (red circles) sampled according

to pc as displayed in Fig. 4. The green markings on the estimated

ground plane are located at z = {2|~t|, . . . , 5|~t|,∞} as well as at

x = {−2.5d, 0, 2.5d}. The magenta circle is the projection of the

estimated ego motion ~t into the image.

where po is the observation probability of the MSS Oφ at

frame φ from the most likely HMM solution found so far,

and w is a Blackman-Harris window with a radius corre-

sponding to 10 s. These two weighting factors allow prop-

agating likely solutions to nearby frames, while pplane and

pstable guide the sampling within a frame as follows: pplane

specifies that the motion of c should fulfill the motion of

Sφ (2), and pstable prioritizes numerically stable solutions.

We define pplane(c | S) as distribution of the relative sym-

metric reprojection error

r =
1

2

ǫ(x̄′,HS x̄) + ǫ(x̄,H−1

S x̄′)

ǫ(x̄, x̄′)
, (18)

where ǫ specifies the Euclidean distance of the image co-

ordinates of two homogeneous vectors. r is assumed to be

Gaussian-distributed with vanishing mean and standard de-

viation 5. In order to compute pstable(x̄ | S), we project x̄
on the plane (5) yielding a 3D position ~x. In this paper, we

assume that points with a large z-coordinate x3 are unstable

since a small perturbation in the image has a big effect on

the ground plane orientation. Points near the horizon even

might be projected from x3 = ∞ to x3 = −∞. Thus, we

prioritize using a Gaussian on x3 having a vanishing mean

and standard deviation 10d.

4.3.3 Pruning

Although we guide the sampling, the quadratic complexity

of the transitions in the HMM is intractable if we would

consider all observations O sampled in all previous itera-

tions. To prune possibly bad observations O, we compare

the negative log likelihoods lo(O) with lHMM(~p ∗) (6). Since

all lo and lt are positive, we can discard all O with

lo(O) > lHMM(~p ∗) (19)



as they cannot improve a given HMM. Furthermore, all

samples Of
i are pruned which would raise the negative log

likelihood of the HMM too much: Alternative paths ~p f
i

which differ from ~p ∗ at frame f by using state Sf
i are dis-

carded iff

lHMM(~p f
i ) > 2 · lHMM(~p ∗). (20)

Of course, this assumption leads to discarding alternative

diverse paths and may prune good observations. However,

similar to simulated annealing, during the first iterations,

lHMM is quite high and alternative paths can be explored.

5. Experiments

For the evaluation, we use sequences from the Kitti

dataset [3] (Fig. 6) as well as own data containing a large

variety of different camera motions and setups (Fig. 7). The

first class of sequences is taken with high quality cameras

and there are GPS tracks available. Furthermore, the cam-

eras are fixed to a car, so the ground plane orientation does

not change significantly over time. In contrast to these se-

quences, the own videos are not aligned with the horizon

and the optical axis does not coincide with the motion di-

rection. In order to test the impact of an imprecise camera

matrix, we use the generic K from Eq. (4) for our own data.

An additional difficulty is that the sequences 9-12 show dif-

ferent, untrained motion patterns recorded by a low-quality

keychain camera with major rolling shutter distortions1.

5.1. Ground Plane Orientation Accuracy

In this experiment, the accuracy of the ground plane es-

timation is measured using the Kitti sequences. We use two

quality criteria for the evaluation: The comparison of inlier

correspondences and the direct comparison of the angle be-

tween estimated and ground truth ground plane orientation.

The GPS data allows us to extract ground truth motion

(~s, ~r). d and the camera orientation are static and given

by the extrinsic camera calibration to the vehicle. Assum-

ing that the vehicle is always located upright on the ground

plane, ~n is also given. Thus, we can compute ground

truth homographies Hgt (2). Similarly, we can compute

estimated ground plane homographies HO using the most

likely observations from the HMM. Using an outlier thresh-

old of r = 10 (18), we compare the set of inliers I(Hgt)
with I(HO) using the intersection over union metric

qiou =
|I(Hgt) ∩ I(HO)|

|I(Hgt) ∪ I(HO)|
. (21)

In Fig. 8, it can be observed that qiou can be siginificantly

raised by the Gibbs sampling.

As baseline, we use our HMM with modified transition

probabilities. As in RANSAC-like approaches, we add a

1Original sequences and videos with qualitative results are available at

www.vision.ee.ethz.ch/˜dragonr/1401.

Figure 8. Comparison between the ground truth inlier set I(Hgt)
and the estimated one I(HO). The intersection is drawn in green,

missing ground plane points in blue and superfluous in red. Left:

the result after the first iteration (qiou = 0.32). Right: the improved

results after the last iteration (qiou = 0.53).

our error / deg our iou inl error / deg inl iou

1 1.68 0.58 20.71 0.27

2 3.27 0.53 35.68 0.18

3 3.86 0.47 74.79 0.21

4 7.48 0.39 48.01 0.44

5 3.83 0.59 62.07 0.24

6 5.98 0.52 73.55 0.20

7 2.37 0.73 78.86 0.20

8 4.33 0.46 103.29 0.18

Table 1. The average angular error of ~n and qiou over the differ-

ent sequences, using our original HMM formulation and an inlier-

preferring one.

Figure 9. Results in sequence 1 of our original HMM formulation

(left), and a formulation containing an inlier-related energy.

term which makes solutions with many inliers more proba-

ble: We change Eq. (6) and set

l′o = lo −
1

2

|I(HO)|
2

σ2
inlier

and (22)

l′t = lt −
1

2

|I(HO′) ∩ I(HO)|
2

σ2
inlier

. (23)

Even if we make the variance σ2
inlier large (10002), our

results degrade drastically: As it can be extracted from Ta-

ble 1, the errors rises a lot. Fig. 9 reveals that the added

term leads to finding false ground planes that maximize in-

lier counts.

In order to qualitatively evaluate sequences 9-16 without

GPS ground truth, we plot the estimated horizon, inliers to

the ground plane homographies as well as orientation lines

in the ground plane coordinate system. As it can be ob-

served from Fig. 10, our results are quite accurate although

the generic camera matrix K is used1.

5.2. Monocular Visual Odometry

Although the principle purpose is ground plane estima-

tion, we can also use the approach for monocular visual

odometry. We compare our approach to the implementa-

tion in Viso [4]. To measure the performance, we compute

www.vision.ee.ethz.ch/~dragonr/1401


Figure 6. Overview of the sequences 1-8 (row-wise starting top left), taken from the Kitti dataset.

Figure 7. Overview over ego-motion sequences 9-16 (row-wise starting top left). Sequences 9-12 are taken from a camera attached to a

bike, sequence 13 from a motorbike with a freely-moving camera, and 14-16 from a car-mounted camera.

our ang / deg our dist / % Viso ang / deg Viso dist / %

1 0.02 0.59 0.80 0.69

2 0.07 0.75 1.22 0.40

3 0.04 0.72 0.27 0.23

4 0.23 1.99 0.92 0.33

5 0.01 0.34 0.41 0.28

6 0.07 0.74 0.39 0.17

7 0.20 1.65 3.06 4.95

8 0.11 2.13 1.68 1.11

Table 2. The average relative angular and distance errors of our

GP-based approach (left two columns) comparing with Viso [4].

camera poses and compare them with the given GPS ground

truth using the translational and angular errors, normalized

by the path length. The results are given in Table 2.

As it can be observed, our approach receives compara-

ble distance errors although we did not include any visual

odometry specific optimizations as degeneracy handling.

However, our angular errors are even one magnitude bet-

ter than the one of Viso. Further qualitative results1 in se-

quences 9-16 indicate that our approach is far more robust

towards rolling shutter and camera blur.

5.3. Discussion

The ability to determine the horizon (Sec. 5.1) and to

measure orientation changes (Sec. 5.2) allows us to use our

approach as a visual Gyroscope. Although this seems not

useful as support for drivers or pilots, the horizon is a very

important cue in image analysis, especially in a monocular

setup where distances have to be measured by foot points

on the ground plane.

Regarding the runtime, our non-optimized current im-

plementation is far from realtime. However, for online GP

estimation, we could reformulate our approach in order to

iteratively estimate the hidden HMM states while using the

Gibbs sampling only from new frames. With this, we could

easily reach realtime performance. Furthermore, we did not

take care about handling degenerate cases, e.g. if there is no

motion. As this is an essential step in visual odometry, we

can expect to boost our results by this.

Since the HMM does not only help us to find the best

ground plane but also returns a probability for this interpre-

tation, we could learn to distinguish different motion pat-

terns with multiple HMMs and use it for the classification of

the ego motion. Finally, the HMM formulation has shown

to be a powerful tool to select the best from multiple hy-

potheses which are connected by inertia constraints. It can

be expected that it outperforms the common handling of

outliers via RANSAC or robust loss functions in structure-

from-motion or SLAM approaches.

6. Conclusion

In this paper, we proposed a new way of ground plane es-

timation. For different pairs of frames, we sample multiple

hypotheses of the ground plane and ego motion via homo-



Figure 10. Qualitative results from our own sequences with diverse motions. The markings are explained in Fig. 5.

graphy decomposition. Our HMM formulation then allows

to find the most likely set of hypotheses. This in turn is used

to sample refined estimates with blocked Gibbs sampling.

We showed that our ground plane estimation approach

works robustly in a large variety of sequences, including

tilted cameras or heavily blurred and wobbling images. Us-

ing our approach for monocular visual odometry, we re-

ceived state-of-the-art distance errors, but the angular error

was one magnitude lower.

Since the approach is quite simple, it is applicable for di-

verse tasks: Motion patterns for the HMM transition prob-

abilities can be learned depending on the application. Fur-

thermore, by changing the HMM observation probabilities,

even other kinds of structures like lines or vanishing points

could be tracked over time.
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